首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17896篇
  免费   1096篇
公路运输   5858篇
综合类   5146篇
水路运输   3861篇
铁路运输   3065篇
综合运输   1062篇
  2024年   62篇
  2023年   142篇
  2022年   515篇
  2021年   727篇
  2020年   739篇
  2019年   520篇
  2018年   474篇
  2017年   558篇
  2016年   582篇
  2015年   795篇
  2014年   1275篇
  2013年   981篇
  2012年   1659篇
  2011年   1493篇
  2010年   1134篇
  2009年   1037篇
  2008年   1091篇
  2007年   1352篇
  2006年   1144篇
  2005年   719篇
  2004年   503篇
  2003年   346篇
  2002年   205篇
  2001年   234篇
  2000年   125篇
  1999年   83篇
  1998年   72篇
  1997年   89篇
  1996年   100篇
  1995年   67篇
  1994年   32篇
  1993年   35篇
  1992年   19篇
  1991年   26篇
  1990年   18篇
  1989年   14篇
  1988年   6篇
  1987年   2篇
  1986年   7篇
  1985年   4篇
  1984年   6篇
排序方式: 共有10000条查询结果,搜索用时 453 毫秒
301.
文章结合国内相关法规,对中越汽车运输的"两议定书"和"国际汽车运输行车许可证制度"中有关公务车辆的内容进行解读,并就如何早日实现中越两国间公务车辆相互驶入问题,提出了建立国际道路运输协调机制等八项举措。  相似文献   
302.
The limited understanding of vehicular emissions in China, especially evaporative emissions, is one obstacle to establishing tighter standards. To evaluate tailpipe and evaporative emissions, two typical China IV vehicles and one Tier 2 vehicle with an onboard refuelling vapour recovery (ORVR) system were selected and tested. One of the China IV vehicles was fuelled with gasoline, E10 and M15, respectively, to investigate the effect of fuel properties on vehicular emissions. For each vehicle, cold-start tailpipe emission tests were conducted first, followed by an evaporation test. Based on the emission factors and real-world vehicle activity data, the annual tailpipe and evaporative hydrocarbon (HC) emissions of each vehicle were calculated and compared. The results show that E10 and M15 significantly reduced the tailpipe CO and particle number (PN) emissions but seriously aggravated the NOx emissions, especially for M15. The hot soak losses (HSLs) and diurnal breathing losses (DBLs) were slightly impacted by the fuel properties. The annual evaporative emissions with E10 and M15 were higher than that with gasoline. The ORVR system effectively controlled the evaporative emissions, especially for DBLs. Evaporative emissions from the China IV vehicles were 1.1–1.4 times the tailpipe HC emissions. Additionally, the evaporative emission factors of the China IV vehicles were almost 50% lower than the standard (2.0 g/test), whereas their annual evaporative emissions were almost 1.8–2.8 times higher than those from the Tier 2 vehicle. Therefore, controlling evaporative emissions currently remains a great need in China, and the ORVR might be a recommended evaporative control technology.  相似文献   
303.
The need to increase measurement accuracy of fuel consumption and pollutant emissions in vehicles is forcing the market to develop chassis-dyno test cells that reproduce on-road conditions realistically.Air-cooling is key to vehicle performance. It is therefore critical that the design of a test cell guarantees realistic cooling of all vehicle components, as important errors in fuel consumption and emissions measurements may otherwise arise. In a test-room, a blower placed in front of the vehicle supplies the cooling air. While there are some guidelines in the literature for the selection of fans required for emissions measurements for standard driving cycles, the information for designing the air supply system for specific tests in other areas is scarce.New Real Driving Emissions (RDE) legislation will force manufacturers to perform on-road measurements of pollutants. This represents a significant challenge due to the variability of conditions coming from non-controlled parameters. In order to optimize vehicles, different tests are performed in cells equipped with a chassis-dyno where the on-road flow field around the vehicle is reproduced as closely as possible.This work provides some guidelines for the definition of the airflow supply system of chassis-dyno facilities for vehicle optimization tests, based on a CFD analysis of the flow characteristics around the vehicle. By comparison with the solution obtained for a vehicle in real road driving conditions, the exit section of the blower and the distance between the blower exit and the car that best reproduce realistic on-road flow conditions in a test room are determined.  相似文献   
304.
In this paper, the location of emergency service (ES) vehicles is studied on fully connected networks. Queuing theory is utilized to obtain the performance metrics of the system. An approximate queuing model the (AQM) is proposed. For the AQM, different service rate formulations are constructed. These formulations are tested with a simulation study for different approximation levels. A mathematical model is proposed to minimize the mean response time of ES systems based on AQM. In the model, multiple vehicles are allowed at a single location. The objective function of the model has no closed form expression. A genetic algorithm is constructed to solve the model. With the help of the genetic algorithm, the effect of assigning multiple vehicles on the mean response time is reported.  相似文献   
305.
根据两船相对运动的特点,利用两船模相对运动的测量数据,运用基于自回归模型的时间序列分析法,建立了两船相对运动的数学模型,并给出了运动姿态的预报值.通过本方法的研究,可以得到满意的相对运动预报精度,为两船补给波浪、补偿装置的开发打下了理论基础.  相似文献   
306.
随着信息技术和计算机技术迅速发展和普及,传统的计算机基础教学方式面临新的挑战。本文探讨了当前形势下大学计算机基础课程教学模式的改革方向,根据多年的教学实践,探讨了高校计算机基础教学改革模式。  相似文献   
307.
Recently connected vehicle (CV) technology has received significant attention thanks to active pilot deployments supported by the US Department of Transportation (USDOT). At signalized intersections, CVs may serve as mobile sensors, providing opportunities of reducing dependencies on conventional vehicle detectors for signal operation. However, most of the existing studies mainly focus on scenarios that penetration rates of CVs reach certain level, e.g., 25%, which may not be feasible in the near future. How to utilize data from a small number of CVs to improve traffic signal operation remains an open question. In this work, we develop an approach to estimate traffic volume, a key input to many signal optimization algorithms, using GPS trajectory data from CV or navigation devices under low market penetration rates. To estimate traffic volumes, we model vehicle arrivals at signalized intersections as a time-dependent Poisson process, which can account for signal coordination. The estimation problem is formulated as a maximum likelihood problem given multiple observed trajectories from CVs approaching to the intersection. An expectation maximization (EM) procedure is derived to solve the estimation problem. Two case studies were conducted to validate our estimation algorithm. One uses the CV data from the Safety Pilot Model Deployment (SPMD) project, in which around 2800 CVs were deployed in the City of Ann Arbor, MI. The other uses vehicle trajectory data from users of a commercial navigation service in China. Mean absolute percentage error (MAPE) of the estimation is found to be 9–12%, based on benchmark data manually collected and data from loop detectors. Considering the existing scale of CV deployments, the proposed approach could be of significant help to traffic management agencies for evaluating and operating traffic signals, paving the way of using CVs for detector-free signal operation in the future.  相似文献   
308.
Indoor air quality in subterranean train stations is a concern in many places around the globe. However, due to the specificity of each case, numerous parameters of the problem remain unknown, such as the braking discs particle emission rate, the ventilation rate of the station or the complete particle size distribution of the emitted particles. In this study the problem of modelling PM10 concentration evolution in relation with train traffic is hence addressed with a particle-mass conservation model which parameters are fitted using a genetic algorithm. The parameters of the model allow to reproduce the dynamics and amplitude of four field data sets from the French and Swedish underground contexts and comply with realistic bounds in terms of emissions, deposition and ventilation rate.  相似文献   
309.
The present paper describes how to use coordination between neighbouring intersections in order to improve the performance of urban traffic controllers. Both the local MPC (LMPC) introduced in the companion paper (Hao et al., 2018) and the coordinated MPC (CMPC) introduced in this paper use the urban cell transmission model (UCTM) (Hao et al., 2018) in order to predict the average delay of vehicles in the upstream links of each intersection, for different scenarios of switching times of the traffic lights at that intersection. The feedback controller selects the next switching times of the traffic light corresponding to the shortest predicted average delay. While the local MPC (Hao et al., 2018) only uses local measurements of traffic in the links connected to the intersection in comparing the performance of different scenarios, the CMPC approach improves the accuracy of the performance predictions by allowing a control agent to exchange information about planned switching times with control agents at all neighbouring intersections. Compared to local MPC the offline information on average flow rates from neighbouring intersections is replaced in coordinated MPC by additional online information on when the neighbouring intersections plan to send vehicles to the intersection under control. To achieve good coordination planned switching times should not change too often, hence a cost for changing planned schedules from one decision time to the next decision time is added to the cost function. In order to improve the stability properties of CMPC a prediction of the sum of squared queue sizes is used whenever some downstream queues of an intersection become too long. Only scenarios that decrease this sum of squares of local queues are considered for possible implementation. This stabilization criterion is shown experimentally to further improve the performance of our controller. In particular it leads to a significant reduction of the queues that build up at the edges of the traffic region under control. We compare via simulation the average delay of vehicles travelling on a simple 4 by 4 Manhattan grid, for traffic lights with pre-timed control, traffic lights using the local MPC controller (Hao et al., 2018), and coordinated MPC (with and without the stabilizing condition). These simulations show that the proposed CMPC achieves a significant reduction in delay for different traffic conditions in comparison to these other strategies.  相似文献   
310.
The turning behavior is one of the most challenging driving maneuvers under non-protected phase at mixed-flow intersections. Currently, one-dimensional simulation models focus on car-following and gap-acceptance behaviors in pre-defined lanes with few lane-changing behaviors, and they cannot model the lateral and longitudinal behaviors simultaneously, which has limitation in representing the realistic turning behavior. This paper proposes a three-layered “plan-decision-action” (PDA) framework to obtain acceleration and angular velocity in the turning process. The plan layer firstly calculates the two-dimensional optimal path and dynamically adjusts the trajectories according to interacting objects. The decision layer then uses the decision tree method to select a suitable behavior in three alternatives: car-following, turning and yielding. Finally, in the action layer, a set of corresponding operational models specify the decided behavior into control parameters. The proposed model is tested by reproducing 210 trajectories of left-turn vehicles at a two-phase mixed-flow intersection in Shanghai. As a result, the simulation reproduces the variation of trajectories, while the coverage rate of the trajectories is 88.8%. Meanwhile, both the travel time and post-encroachment time of simulation and empirical turning vehicles are similar and do not show statistically significant difference.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号