全文获取类型
收费全文 | 277篇 |
免费 | 31篇 |
专业分类
公路运输 | 125篇 |
综合类 | 105篇 |
水路运输 | 7篇 |
铁路运输 | 60篇 |
综合运输 | 11篇 |
出版年
2023年 | 3篇 |
2022年 | 2篇 |
2021年 | 8篇 |
2020年 | 9篇 |
2019年 | 7篇 |
2018年 | 2篇 |
2017年 | 3篇 |
2016年 | 5篇 |
2015年 | 12篇 |
2014年 | 34篇 |
2013年 | 36篇 |
2012年 | 35篇 |
2011年 | 41篇 |
2010年 | 19篇 |
2009年 | 17篇 |
2008年 | 13篇 |
2007年 | 19篇 |
2006年 | 15篇 |
2005年 | 14篇 |
2004年 | 6篇 |
2003年 | 2篇 |
2002年 | 3篇 |
2001年 | 2篇 |
1995年 | 1篇 |
排序方式: 共有308条查询结果,搜索用时 15 毫秒
41.
温拌沥青混合料配合比设计及与热拌沥青混合料的性能对比研究 总被引:1,自引:0,他引:1
文章根据温拌沥青混合料(WMA)在河南省郑州至石人山高速公路具茨山隧道上的应用,介绍其配合比设计过程,并根据配合比设计和路用性能测试,与相同类型的热拌沥青混合料(HMA)的路用性能进行了对比,结果表明WMA和HMA的路用性能基本相同,且能满足热拌沥青混合料的规范要求。 相似文献
42.
43.
青藏铁路19标段海拔高度近五千米,位于多年冻土区,气候极为恶劣,施工期短。本文就该标段特殊环境条件下如何保证混凝土的施工质量和进度,从人员、机械设备的组织、物资供应、混凝土的施工及质量控制、医疗卫生保障等方面进行了较详尽的介绍。 相似文献
44.
45.
为了研究修筑公路对高海拔多年冻土层热状态的影响,开展了新藏公路多年冻土区路段沿线病害调查,在海拔5 400 m地带修筑了冻土地温监测断面与气象监测站点;对气温、地温、辐射强度进行了监测,依据监测结果计算了冻土上限处的热流通量,分析了多年冻土层地温变化特征;基于热传导和热扩散理论,建立了天然地基及普通路基下部多年冻土地温-深度理论预测模型。研究结果表明:多年冻土区公路病害主要由于沥青路面大量吸热导致,热棒、隔热层等主动、被动保护的手段虽有一定效果,但不能改变多年冻土的快速退化;研究区域天然地基与路基中心一天内温差最高达19.66 ℃,左、右路肩一天内温差最高为4.94 ℃,天然地基下深层多年冻土温度稳定在-6.0 ℃左右,路基中心下部深层多年冻土温度稳定在-5.6 ℃左右,路基下部相较天然地基温度变化更为剧烈,且等温层温度更高;研究区域的辐射强度在一天的10:00~18:00显著增强,在一年的3~6月为辐射强度的顶峰期,浅层地温主要受辐射强度的年周期变化影响;天然地基、路基中心、阴坡路肩与阳坡路肩下部多年冻土层年热流通量依次为-4 001、-14 649、-4 487与58 303 kJ·m-2,路基中心散热速率大于天然地基,阳坡路肩处大量吸热;天然地基的等温层出现在9.79 m深度处,而路基中心等温层出现在9.61 m深度处,路基中心等温层位置更浅,路基土的换填使路基下部浅层冻土温度变化更明显,短期内对下部多年冻土的散热有正向作用;在阴阳坡效应下,阳坡下部多年冻土温度升高,路基热稳定性降低,并产生不均匀沉降。 相似文献
46.
47.
温拌再生沥青混合料的路用性能研究 总被引:4,自引:2,他引:4
研究了Sasobit掺入量对沥青黏度的影响,确定了温拌沥青混合料的拌和温度;试验研究了当废旧沥青混合料掺入量为0%~60%时,温拌再生沥青混合料的高温性能、低温性能及水稳定性,并与热拌沥青混合料的技术指标进行了比较;分析了废旧沥青混合料掺入量对温拌再生沥青混合料性能的影响.研究结果表明:Sasobit可显著降低沥青的黏... 相似文献
48.
49.
地基融沉是造成冻土地区路面病害的主要原因之一,在路面设计当中需要对此进行有效考虑。在对冻土地区路面破坏模式分析的基础之上,采用力学方法和数学方法对诱发常见路面病害的冻土融沉规律进行研究,对冻土温度场与环境温度变化的相关性规律以及不同融沉条件下路面结构内部的应力应变场进行研究,并通过大量的分析计算以及实地观测,提出了考虑融沉的路面设计方法和流程。该方法能够使路面设计时有效考虑未来融沉可能对基层、面层等不同层位产生的附加应力,从而使得在路面结构设计初期能够更加有效地考虑冻土融沉的影响。 相似文献
50.
基于软硬沥青复配技术,实施沥青混合料的温拌配制.阐述该类温拌沥青混合料的技术原理、制备工艺和配合比设计关键;测试该类混合料的路用性能,并用于沥青路面工程铺筑.室内试验和现场检测结果表明,与同级配类型的、基质沥青配制的热拌沥青混合料相比,该类沥青混合料的高温稳定性和抗疲劳性略胜一筹,水稳定性相当;现场拌和温度可以降低30℃左右,摊铺和碾压过程中的降温幅度较低,更易压实;可以有效降低拌和、摊铺和压实过程中的废气排放水平. 相似文献