全文获取类型
收费全文 | 1259篇 |
免费 | 78篇 |
专业分类
公路运输 | 296篇 |
综合类 | 210篇 |
水路运输 | 563篇 |
铁路运输 | 249篇 |
综合运输 | 19篇 |
出版年
2025年 | 17篇 |
2024年 | 56篇 |
2023年 | 49篇 |
2022年 | 28篇 |
2021年 | 67篇 |
2020年 | 74篇 |
2019年 | 62篇 |
2018年 | 41篇 |
2017年 | 43篇 |
2016年 | 35篇 |
2015年 | 56篇 |
2014年 | 98篇 |
2013年 | 75篇 |
2012年 | 106篇 |
2011年 | 96篇 |
2010年 | 72篇 |
2009年 | 62篇 |
2008年 | 52篇 |
2007年 | 69篇 |
2006年 | 52篇 |
2005年 | 36篇 |
2004年 | 17篇 |
2003年 | 10篇 |
2002年 | 9篇 |
2001年 | 15篇 |
2000年 | 10篇 |
1999年 | 9篇 |
1998年 | 5篇 |
1997年 | 3篇 |
1996年 | 4篇 |
1995年 | 2篇 |
1994年 | 2篇 |
1993年 | 1篇 |
1991年 | 1篇 |
1990年 | 2篇 |
1985年 | 1篇 |
排序方式: 共有1337条查询结果,搜索用时 0 毫秒
151.
船舶废气涡轮增压器喘振故障分析及排除 总被引:1,自引:0,他引:1
林颖毅 《武汉船舶职业技术学院学报》2012,11(3):41-43
分析了增压器喘振的机理和原因,结合实例对喘振故障现象进行了分析,并针对故障原因提出了措施。 相似文献
152.
许 《变流技术与电力牵引》2007,(6):49-52
双馈发电机的有功和无功功率的解耦控制是变速恒频(VSCF)风力发电系统的关键技术.文章阐述了变速恒频风力发电系统的工作原理,在分析双馈感应电机的动态数学模型以及定子磁链定向矢量控制的基础上,介绍了一种有效的有功和无功功率解耦控制方法.Matlab仿真结果表明,该控制方案能够很好地实现双馈电机的有功和无功功率的解耦控制,验证了其正确性和有效性. 相似文献
153.
日本列车横风和强风对策研究 总被引:4,自引:1,他引:4
随着我国列车提速和高速客运专线的发展,列车的空气动力学问题变得越来越突出和重要.对该问题进行研究时,借鉴铁路发达国家的研究成果是有意义的.日本的铁路发展较早,现代化程度较高,同时因地域关系,台风和龙卷风发生频繁,由此引发的列车事故严重,相关的研究也深入.本文分别介绍了日本列车横风灾害和横风导致列车倾覆机理及计算模型的研究、列车空气动力学专用大型风洞研究、不同外形列车与铁路构造物(桥梁、路堤等)组合的风洞试验研究成果和足尺模型在自然风环境下的测试结果、列车倾覆临界风速研究和保障列车安全运行的管制制度和设置防风栅研究等,为我国高速列车的空气动力学研究提供参考. 相似文献
154.
单周期控制在风力发电并网逆变器中的应用 总被引:1,自引:0,他引:1
付勋波 《变流技术与电力牵引》2008,(4):30-34
首先对风力发电系统背靠背变流器中的逆变器模型及其单周期控制(OCC)进行原理推导,然后在Matlab7.1/Simulink仿真环境下对单周期控制的并网逆变器(GCI)进行了仿真,最后在实验室搭建的风力发电实验平台上对其进行了验证,结果证明单周期控制并网逆变器能够工作在单位功率因数下,并可减少对电网的谐波污染。 相似文献
155.
路堤上运行的高速列车在侧风下的流场结构及气动性能 总被引:4,自引:0,他引:4
强侧风产生的气动力时高速列车的运行安全性有显著的影响。基于三维、定常、不可压N-S方程以及k-ε双方程湍流模型,采用有限体积法,对侧风作用下路堤上运行的高速列车进行数值模拟计算,所模拟的列车时速达350 km。通过分析侧风条件下列车周围的流场结构,得到了风速、车速与气动力之间的变化关系。研究结果表明,尽管所计算的列车外表几何形状简单,但其流场仍然非常复杂,列车背风侧将产生数个漩涡,漩涡的位置随车速、风速发生变化。车辆气动力随风速、车速的增加而逐渐增大。头车所受倾覆力矩最大,且其增长率也最大。 相似文献
156.
以TI公司高速DSP芯片TMS320F2812为例,分析了传统程序下载方式的缺点。详细阐述了通过以太网-CAN网络远程下载程序的硬件需求配置、对上位机软件功能的要求以及实现基于DSP芯片底层代码的方法。实践表明,该方法应用于兆瓦级风电变流器的现场调试和维护具有很强的实用性和典型性,能大大提高嵌入式DSP程序的维护效率。 相似文献
157.
Wind energy is clean and sustainable. Taiwan is establishing offshore wind farms using wind turbines in the Taiwan Strait. However, these are located in an earthquake-prone area with sandy seabed conditions. To ensure their safety and reliability, the turbines’ support structure must be protected against wind, waves, and seismic loads. Tuned mass dampers (TMDs) are commonly employed to reduce structural vibrations. A TMD is more simply incorporated into turbine structures than are other energy dissipation devices. In this study, a 1:25-scale test model with a TMD was constructed and subjected to shaking table tests to experimentally simulate the dynamic behavior of a typical 5-MW wind turbine with a jacket-type support structure and pile foundation. The scaled-down wind turbine model has a nacelle without rotating blades; therefore, the aerodynamic and rotational effects due to the rotating blades were ignored in this study. A large laminar shear box filled with saturated sandy ground was used to simulate the typical seabed conditions of Taiwanese offshore wind farms. The TMD system was designed to be tuned the first-mode frequency of the test model. Two ground accelerations, selected by considering wind farm site condition and near-fault characteristics, were used for excitation in the test. The responses of the test model with and without the TMD system were compared, and the influence of soil liquefaction on the effectiveness of TMD vibration control was addressed. 相似文献
158.
Fatigue damage is one of the governing factors for the design of offshore wind turbines. However, the full fatigue assessment is a time-consuming task. During the design process, the site-specific environmental parameters are usually condensed by a lumping process to reduce the computational effort. Preservation of fatigue damage during lumping requires an accurate consideration of the met-ocean climate and the dynamic response of the structure. Two lumping methods (time-domain and frequency-domain) have been evaluated for a monopile-based 10 MW offshore wind turbine, both based on damage-equivalent contour lines. Fatigue damage from lumped load cases was compared to full long-term fatigue assessment. The lumping methods had an accuracy of 94–98% for the total long-term fatigue damage and 90% for individual wind speed classes, for aligned wind and waves. Fatigue damage was preserved with the same accuracy levels for the whole support structure. A significant reduction of computational time (93%) was achieved compared to a full long-term fatigue assessment. For the cases with 30° and 60° wind-wave misalignment, there was a mean underestimation of approximately 10%. Variations in penetration depth did not affect the selection of the lumped sea-state parameters. This work presents a straightforward method for the selection of damage-equivalent lumped load cases, which can adequately preserve long-term fatigue damage throughout the support structure, providing considerable reduction of computational effort. 相似文献
159.
Fatigue assessment is a critical design aspect for many offshore structures. Soil-foundation interaction has a direct impact on the system dynamic response of these structures. While the stiffness of the soil-foundation interaction influences the system's natural frequency, the damping influences the amplification of the structural response to environmental excitations. This paper presents a simplified model for estimating the soil damping due to nonlinear soil response for pile foundations, which have wide applications in the offshore industry, such as for supporting jacket platforms, wind turbines and wellhead facilities. The proposed model is fundamentally linked to the damping response of the soil measured at element level therefore it offers design engineers an efficient and accurate way to estimate soil-pile interaction damping based on site-specific soil data. Approaches to include the suggested model for structural analysis are also proposed. 相似文献
160.
Nonlinear hydrodynamics play a significant role in accurate prediction of the dynamic responses of floating wind turbines (FWTs), especially near the resonance frequencies. This study investigates the use of computational fluid dynamics (CFD) simulations to improve an engineering model (based on potential flow theory with Morison-type drag) by modifying the second-order difference-frequency quadratic transfer functions (QTFs) and frequency-dependent added mass and damping for a semi-submersible FWT. The results from the original and modified engineering models are compared to experimental data from decay tests and irregular wave tests. In general, the CFD results based on forced oscillation tests suggest increasing the frequency-depending added mass and damping at low frequencies compared to first order potential flow theory. The modified engineering model predicts natural periods close to the experimental results in decay tests (within 5%), and the underprediction of the damping is reduced compared to the original engineering model. The motions, mooring line tensions and tower-base loads in the low-frequency response to an irregular wave are underestimated using the original engineering model. The additional linear damping increases this underestimation, while the modified QTFs based on CFD simulations of a fixed floater in bichromatic waves result in larger difference-frequency wave loads. The combined modifications give improved agreement with experimental data in terms of damage equivalent loads for the mooring lines and tower base. 相似文献