首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
水路运输   2篇
  2001年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
A data and dynamics driven approach to estimate, decompose, organize and analyze the evolving three-dimensional variability of ocean fields is outlined. Variability refers here to the statistics of the differences between ocean states and a reference state. In general, these statistics evolve in time and space. For a first endeavor, the variability subspace defined by the dominant eigendecomposition of a normalized form of the variability covariance is evolved. A multiscale methodology for its initialization and forecast is outlined. It combines data and primitive equation dynamics within a Monte-Carlo approach.The methodology is applied to part of a multidisciplinary experiment that occurred in Massachusetts Bay in late summer and early fall of 1998. For a 4-day time period, the three-dimensional and multivariate properties of the variability standard deviations and dominant eigenvectors are studied. Two variability patterns are discussed in detail. One relates to a displacement of the Gulf of Maine coastal current offshore from Cape Ann, with the creation of adjacent mesoscale recirculation cells. The other relates to a Bay-wide coastal upwelling mode from Barnstable Harbor to Gloucester in response to strong southerly winds. Snapshots and tendencies of physical fields and trajectories of simulated Lagrangian drifters are employed to diagnose and illustrate the use of the dominant variability covariance. The variability subspace is shown to guide the dynamical analysis of the physical fields. For the stratified conditions, it is found that strong wind events can alter the structures of the buoyancy flow and that circulation features are more variable than previously described, on multiple scales. In several locations, the factors estimated to be important include some or all of the atmospheric and surface pressure forcings, and associated Ekman transports and downwelling/upwelling processes, the Coriolis force, the pressure force, inertia and mixing.  相似文献   
2.
A primitive equation ocean model is used to generate trajectories of simulated clusters of drifters in the California Current (CC) region. These trajectories allow us to evaluate a least squares (LS) method of estimating vorticity and vertical velocity along a cluster's path. Two clusters provide examples of successful and less successful estimates of vorticity and vertical velocity. Our analysis quantifies the dependence of estimate quality on several parameters that can be used as error predictors in the LS estimate of vorticity: cluster separation, number of drifters in a cluster, and cluster shape. A combination of cluster separation and ellipticity shows the most promise as an indicator of quality for the vorticity estimate.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号