首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   8篇
公路运输   24篇
综合类   48篇
水路运输   98篇
铁路运输   8篇
综合运输   2篇
  2023年   7篇
  2022年   6篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2018年   6篇
  2017年   2篇
  2016年   8篇
  2015年   3篇
  2014年   7篇
  2013年   3篇
  2012年   4篇
  2011年   9篇
  2010年   2篇
  2009年   14篇
  2008年   9篇
  2007年   10篇
  2006年   2篇
  2005年   6篇
  2004年   6篇
  2003年   7篇
  2002年   3篇
  2001年   6篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1996年   7篇
  1995年   8篇
  1994年   3篇
  1993年   5篇
  1992年   6篇
  1991年   3篇
  1990年   7篇
  1989年   3篇
排序方式: 共有180条查询结果,搜索用时 365 毫秒
171.
基于一维、三维及耦合模型的汽油机进气系统优化   总被引:1,自引:0,他引:1  
建立了基于一维计算流体动力学(CFD)进排气系统的某4缸4行程电喷汽油机工作过程循环数值模型,在验证模型精度的基础上,对发动机的歧管长度和配气相位进行了优化。通过一维CFD模型计算得到的进气系统优化结果,建立了进气歧管的三维稳态CFD模型,分析了歧管各支管的流动阻力和流动均匀性。最后将一维与三维进气歧管模型耦合建立汽油机工作过程循环数值模型,对该发动机工作过程中进气歧管内的动态流动进行了详细解析,分析了歧管长度和配气相位对流动的影响。  相似文献   
172.
气动力矩阵和气动导数对桥梁颤振稳定性的影响   总被引:2,自引:0,他引:2  
采用集中气动力矩阵和一致气动力矩阵2种不同形式的气动力矩阵,并利用4种不同截面的气动导数研究了气动力矩阵对颤振临界状态的影响;采用理想平板的气动导数研究了各气动导数对颤振临界状态的影响。结果表明:采用集中气动力矩阵可降低颤振临界风速,使结果偏于保守;各气动导数对量纲一的风速和颤振临界风速均有一定影响,而对颤振频率影响较小,从而进一步证实了采用流线型断面形式的桥梁,其颤振形态是弯扭耦合的经典颤振。  相似文献   
173.
文章基于粘性流体理论,采用CFD技术,通过对双体船变漂角旋臂运动的模拟,得到代表小水线面双体船舶操纵性能的水动力导数。利用MMG模型,对小水线面双体船的操纵性能进行初步预报。根据变漂角旋臂运动的数值模拟,既可从中得到仅仅与漂角和角速度有关的水动力导数,也可获得包括高阶导数和耦合导数在内的操纵性运动水动力导数。文章在保留三阶水动力导数的情况下,将代入高阶耦合水动力导数的操纵运动方程所绘制的回转圈与不代入高阶耦合水动力导数的回转圈进行对比,体现了高阶耦合水动力导数对于小水线面双体船操纵性预报的重要性,并以某双体船型为例,对其操纵性能进行预报。  相似文献   
174.
为了更加精确、全面地表征沥青混合料的动态黏弹性力学特性,基于四参数分数阶导数Zener模型(FDZ)分配微分算子后,分别得到修改五参数分数阶导数模型(MFPFD)和改进五参数分数阶导数模型(IFPFD)的本构方程,并进一步得到了模型的复数模量解析表达式。将复数模量分离实部和虚部得到存储模量、损失模量及损耗因子的系数解析表达式。采用LARE目标函数,基于时温等效原理,构造了3个模型的黏弹函数主曲线,通过拟合优度和目标函数最优值评价模型拟合的效果,并对2种分数阶导数模型进行了对比。研究结果表明:FDZ模型和MFPFD模型黏弹函数呈现相似的性质,说明FDZ模型分配微分算子后黏弹函数的特性未发生变化;IFPFD模型采用1套参数即可较好地表征沥青混合料的所有动态黏弹函数,如存储模量、损失模量、相位角、动态模量、损耗因子及Cole-cole曲线,满足Kramers-Kronig关系;与FDZ模型相比,IFPFD模型增加模型参数β,能够更好地描述损失模量的峰宽和其他黏弹函数的非对称特征。最后,IFPFD模型的参数具有一定的物理意义,而根据数值优化所得的模型参数,能确定参考温度下动态黏弹性分数阶导数的微分方程,且分数阶微分本构方程较为简单,研究结果可为沥青混合料设计和路面动力学分析提供新的思路。  相似文献   
175.
扁平箱梁因具有较优的颤振性能,已被应用于绝大多数大跨径桥梁. 为便于桥梁设计者在大跨度桥梁初步设计阶段快速评估扁平箱梁的颤振性能,提出了一种基于集成学习的深度神经网络模型,用于快速预测扁平箱梁颤振导数. 首先采用强迫振动风洞试验获取了15种典型扁平箱梁的颤振导数,结合自由振动风洞试验和二维颤振计算验证了颤振导数的准确性;基于风洞试验数据,构建了大小为525的颤振导数数据集,以此数据集为基础,对所提出的集成式深度神经网络开展了模型训练和性能测试. 计算结果表明:所提出的集成式深度神经网络模型仅依靠扁平箱梁的气动外形特征即可准确且快速地预测不同折算风速下的8个颤振导数,且仅利用本文60%的数据集进行训练即可获取较高精度的预测结果;对比传统的多项式回归模型和单一人工神经网络模型,本文所提出的集成式深度神经网络模型预测精度更高,可直接应用到桥梁初步设计阶段的气动选型和颤振计算中.   相似文献   
176.
本文对水下航行器的操纵运动在线建模进行研究。使用增量式最小二乘法辨识得到了 MARIUS AUV的水动力导数。为了提高辨识精度,使用积分型辨识样本结构进行输入输出样本对的构造。基于约束模试验获取的水动力导数,进行操纵运动仿真,得到纵向速度、横向速度、摇首角速度和舵角等样本参数。通过试验水动力导数和辨识得到的水动力导数对比,表明辨识算法的有效性。该研究对水下航行器操纵运动的在线建模和控制应用具有重要意义。  相似文献   
177.
潜艇旋臂回转试验数值模拟   总被引:3,自引:0,他引:3  
为模拟潜艇回转运动,文中以结构化网格为基础,分别选取了基于固定坐标系的Mesh Motion方法和基于运动坐标系的添加动量源项方法对旋转导数进行预报,对全附体SUBOFF模型进行回转运动仿真,并与试验结果进行对比。结果表明:Mesh Motion方法和添加动量源项方法均满足工程要求,添加动量源项方法计算时,网格数目少,有效降低了计算耗时。最后,根据Y+的不同分布,文中分析了回转运动中RNG k-ε湍流模型和SST k-ω湍流模型的计算精度和计算时间。  相似文献   
178.
月池对船舶水动力导数影响研究   总被引:1,自引:0,他引:1  
为了对带月池船舶的操纵水动力进行预报,运用CFD技术和重叠网格技术,以深拖母船为研究对象,数值模拟船舶的斜航运动、纯横荡运动和纯首摇运动。将测得的力和力矩进行处理,分别计算出了月池打开和封闭时的水动力导数。通过对比数值计算结果与势流理论计算结果,验证了该方法的合理性和有效性。通过比较月池封闭和打开时的水动力导数,发现大部分水动力导数都因为月池的存在而有所增加,这为预报带月池船舶的操纵性提供参考。  相似文献   
179.
目前敞水水动力导数的研究较为成熟,针对冰水耦合后的船舶水动力导数研究尚处于起步阶段。本文使用STAR-CCM+软件中DEM颗粒模拟碎冰粒子,求解碎冰区冰水混合介质中船舶横荡运动水动力导数。通过开启DEM模块下双向耦合模式,进行动量、能量交换达到冰块与水耦合作用。选取低频频率f分别为0.06 Hz、0.08 Hz、0.1 Hz、0.12 Hz、0.14 Hz进行横荡运动数值模拟,忽略自由液面的影响,分别计算敞水工况以及碎冰工况下船舶各运动频率下所受的侧向力以及转艏力矩,并通过对各频率下无因次后的力以及力矩拟合来解出部分水动力导数。通过计算得知,敞水工况下船舶各部分水动力导数值与统计公式计算值相差不大,冰水耦合后大部分水动力导数在低频率下明显大于敞水工况下的水动力导数,而水动力导数Yv’值比敞水工况值小。  相似文献   
180.
由于风洞试验和理论模型的各种不确定性,通过风洞试验获得的颤振导数及相应的颤振临界风速存在不确定性。为了量化这些不确定性,提出了一种创新的近似贝叶斯方法。该方法通过抽样和模拟来近似表达似然函数,从而实现颤振导数的准确识别和不确定性量化。同时,还研究了颤振导数不确定性在颤振分析中的传播情况。采用子集模拟技术与近似贝叶斯方法相结合,以提高参数后验样本的抽样效率。该方法不仅能够获得颤振导数和颤振临界风速的最优估计,还能获得其后验概率分布。通过理想平板数值模拟和实桥主梁断面风洞试验,验证了该方法的有效性,并将其与传统最小二乘法进行了比较。研究结果显示:该方法得到的颤振导数最优估计与最小二乘法结果非常接近;在低风速下,所有导数的不确定性都较小,而在中高风速情况下,大多数导数都具有较大的不确定性,尤其是接近颤振临界风速时,所有导数的不确定性均较大;颤振导数的不确定性会在颤振分析中传播,导致颤振临界风速也存在较大的不确定性。所提出的近似贝叶斯方法能够准确识别颤振导数,并量化其不确定性,从而实现桥梁颤振性能的概率性评价;为桥梁颤振分析提供了新的思路,为确保桥梁的抗风安全提供了有力支持。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号