全文获取类型
收费全文 | 217篇 |
免费 | 32篇 |
专业分类
公路运输 | 85篇 |
综合类 | 102篇 |
水路运输 | 26篇 |
铁路运输 | 26篇 |
综合运输 | 10篇 |
出版年
2024年 | 2篇 |
2023年 | 12篇 |
2022年 | 15篇 |
2021年 | 19篇 |
2020年 | 13篇 |
2019年 | 15篇 |
2018年 | 4篇 |
2017年 | 10篇 |
2016年 | 7篇 |
2015年 | 12篇 |
2014年 | 17篇 |
2013年 | 5篇 |
2012年 | 15篇 |
2011年 | 15篇 |
2010年 | 19篇 |
2009年 | 11篇 |
2008年 | 14篇 |
2007年 | 8篇 |
2006年 | 14篇 |
2005年 | 4篇 |
2004年 | 5篇 |
2003年 | 5篇 |
2002年 | 1篇 |
2001年 | 3篇 |
1999年 | 2篇 |
1996年 | 1篇 |
1990年 | 1篇 |
排序方式: 共有249条查询结果,搜索用时 0 毫秒
191.
准确的短时交通流预测是交通控制和交通诱导的依据. 提出一种基于改进灰狼算法(TGWO)优化BP 神经网络的短时交通流预测模型(TGWO-BP),有效提高短时交通流预测精度. 针对标准灰狼算法(GWO)收敛速度慢,容易陷入局部极值的问题,提出一种自适应递减的收敛因子,使灰狼算法区分全局搜索和局部搜索;改进灰狼个体的位置更新公式,引入惯性权重,调节惯性权重大小使灰狼算法具有跳出局部极值的能力;对比分析TGWO-BP、GWOBP 、PSO-BP、BP这4 种短时交通流预测模型,结果显示,TGWO-BP的短时交通流预测模型误差为10.03%,达到较好的预测精度. 相似文献
192.
针对短时交通流所存在的不确定性即模糊性与随机性特点和准周期规律,提出基于灰色关联分析和少数据云推理的短时交通流预测模型.首先,针对短时交通流的准周期规律,运用灰色关联分析提取不同日期相同时段历史序列中最相似序列;其次,提出少数据逆向云算法,建立交通流序列一维云推理机制;最后综合利用历史云及当前云生成预测云,用于短时交通流实时预测.实例分析表明,预测精度良好,能够有效实现短时交通流的实时预测.该模型解决了少数据条件下正向云参数确定问题,降低了数据处理工作量,开拓了云模型在短时交通流中的应用. 相似文献
193.
高速公路桥头搭板脱空痛害影响汽车行驶安全,利用地质雷达探测数据,如何提取此类病害信息,是探测研究的关键.采用常规的反射能量的观点来解释脱空病害存在一定难度,而ARMA谱对弱小信号的频谱变化具有较高敏感性,根据雷达波信号穿过脱空区域产生的谱变化和具有时间局部性特征,提出ARMA谱密度期望值的观点和相应的短时窗滚动谱算法,通过对脱空区模型进行数字模拟计算,给出了短时窗口关键参数的选取和脱空区谱密度期望值的响应特征.利用雷达波短时窗谱密度期望值响应参数的变化在许禹高速公路桥梁搭板脱空探测中得到了应用,验证了技术方法的可行性. 相似文献
194.
交通流短时预测是智能交通系统中的一个重点问题,预测效果的好坏直接关系到控制和诱导的结果,是实现先进交通管理信息系统的关键技术之一. 本文简要介绍了协整和误差修正模型的概念,利用序列的协整性来进行交通流组合预测模型的有效性验证,并利用误差修正模型提高组合预测模型的稳定性. 我们利用北京市二环路上采集到的交通流数据进行了模型的验证. 研究结果表明,基于协整理论的交通流组合预测模型可以取得很好的预测效果. 相似文献
195.
路段行程时间超前预报是动态交通诱导方案制定的基础,应用短时交通预测的方法可以获得将来某个时刻的路段行程时间数据,但已有研究成果,还存在适应性不强,计算量大,基础数据需求多等不足。应用谱分析及Karhunen-Loeve变换对随机序列的分解与重构功能,通过挖掘路段历史行程时间序列与当前检测行程时间序列的相似性特征进行序列重构,实现对后一时段路段行程时间的预测,结果显示,该方法具有良好的预测精度。 相似文献
196.
197.
鉴于当前的城市交通拥挤不堪的现状,以及现阶段道路交通流预测时间消耗过长的弊端,将小波分析引入到城市短时交通流预测过程中,结合隐马尔科夫训练,提出一种基于小波分析的隐马尔科夫训练交通流预测模型。文章以新乡市交通局公交汽车数据和出租汽车数据作为数据来源,应用小波分析和隐马尔科夫相结合的预测模型进行预测,随后将预测结果同传统的隐马尔科夫模型所预测的结果进行对比分析。实验表明,本模型预测结果精确,与真实数据更为贴近,同时有效的降低了交通流预测的时间损耗,在短时交通流预测方面更加具有优越性。 相似文献
198.
针对电机轴承故障信号通常呈现出非线性和不稳定性这一缺点,利用短时傅里叶变换将振动信号转换成二维时频图作为输入训练卷积神经网络;再利用卷积神经网络的自学习能力学习电机轴承故障类型与故障特征之间的深层联系.仿真实验结果表明,相比较其他方法,该方法具有更高的诊断准确率,能够更有效地识别电机轴承故障. 相似文献
199.
为了进一步提高短时交通参数多步预测的效果,以自适应指数平滑法、BP神经网络法和小波分析理论作为基础模型,利用前一时刻预测误差确定基础模型在组合模型中所占权重,提出了一种交通参数一步预测组合模型;通过分析交通参数合成和分解机理,在分别提出多时间尺度交通参数合成方法和交通参数分解方法的基础上,设计了一种基于多时间尺度一步外推的短时交通参数多步预测方法,采用某大城市感应线圈1 min时间尺度的交通参数数据进行了验证和对比分析.验证结果表明,交通参数一步预测组合模型的预测效果明显优于任一基础模型,且该方法的多步预测效果明显优于循环一步外推短时交通参数多步预测方法. 相似文献
200.