全文获取类型
收费全文 | 771篇 |
免费 | 28篇 |
专业分类
公路运输 | 263篇 |
综合类 | 175篇 |
水路运输 | 245篇 |
铁路运输 | 102篇 |
综合运输 | 14篇 |
出版年
2024年 | 6篇 |
2023年 | 32篇 |
2022年 | 33篇 |
2021年 | 46篇 |
2020年 | 27篇 |
2019年 | 30篇 |
2018年 | 10篇 |
2017年 | 18篇 |
2016年 | 21篇 |
2015年 | 33篇 |
2014年 | 27篇 |
2013年 | 42篇 |
2012年 | 39篇 |
2011年 | 30篇 |
2010年 | 32篇 |
2009年 | 32篇 |
2008年 | 33篇 |
2007年 | 32篇 |
2006年 | 29篇 |
2005年 | 22篇 |
2004年 | 21篇 |
2003年 | 26篇 |
2002年 | 26篇 |
2001年 | 22篇 |
2000年 | 15篇 |
1999年 | 19篇 |
1998年 | 14篇 |
1997年 | 13篇 |
1996年 | 5篇 |
1995年 | 4篇 |
1994年 | 11篇 |
1993年 | 14篇 |
1992年 | 16篇 |
1991年 | 2篇 |
1990年 | 11篇 |
1989年 | 4篇 |
1988年 | 1篇 |
1985年 | 1篇 |
排序方式: 共有799条查询结果,搜索用时 15 毫秒
21.
利用有限元分析软件建立桥梁基础及双孔地铁的模型,模拟地铁盾构的施工工况。研究盾构施工前后地铁隧道、周边土体变形趋势及其对地铁顺穿桥梁的桩基础轴力、弯矩、水平变形及沉降的影响。分析结果表明:隧道施工造成隧道上部土体沉降,下部土体隆起,隧道呈现椭圆形;其顺穿桥梁桩基轴力、弯矩增加幅度较大,桩基在地铁隧道深度以上竖向沉降,在隧道深度下局部桩体隆起,桩身位移呈现“3”字形,最大位移位于隧道中心标高与隧道底标高之间。 相似文献
22.
为解决钢-混组合梁负弯矩区混凝土面板的开裂问题,采用薄层超高性能混凝土(UHPC)替代部分普通混凝土(NC),制作钢-UHPC-NC组合梁,对组合梁负弯矩作用下的受力性能进行研究.设计制作了2根钢-UHPC-NC组合梁(21 cm厚的C50混凝土+4 cm厚的UHPC)和1根钢-NC组合梁试件(25 cm厚的C50混凝... 相似文献
23.
为提高钢-混组合梁桥负弯矩区混凝土桥面板的抗裂性并简化现场施工工艺,提出新型钢-混组合梁桥负弯矩区超高性能混凝土(Ultra-high Performance Concrete,UHPC)接缝方案。以湖南省某桥为工程背景,进行1∶2缩尺模型抗弯试验研究;编制截面弯矩-曲率关系MATLAB程序,并与实测值进行对比,验证该程序可用于计算UHPC覆盖下的普通混凝土(NC)中钢筋应力;对现有NC裂缝宽度规范公式进行修正,提出考虑UHPC约束作用的组合梁负弯矩区NC最大裂缝宽度的建议公式;讨论钢-混组合梁桥负弯矩区UHPC湿接缝合理的纵桥向长度,分析UHPC层厚度及层内配筋对抗裂性能的影响。研究结果表明:新型UHPC接缝方案的抗裂性能和抗弯承载能力均满足工程要求,且接缝节点强度高于非接缝区预制部分强度;负弯矩作用下,试件沿梁高的应变较好地满足平截面假定,钢梁与混凝土板及UHPC与NC间的层间滑移量均较小;UHPC裂缝呈现“多而细”的特征,而NC裂缝呈现“少而宽”的特征,预制部分混凝土顶面最先开裂,之后UHPC-NC交界面、UHPC顶面、UHPC覆盖下的NC侧面依次出现裂缝;对于负弯矩区采用UHPC接缝的中小跨径钢-混组合连续梁桥,UHPC层的纵桥向长度宜为20%标准跨径,UHPC层厚度可根据实际工程设计要求确定,增大桥面板内钢筋直径可以提高负弯矩区混凝土的抗裂性能。 相似文献
24.
由于异形盾构隧道特殊的结构断面型式,管片设计暂无相关规范可循,故基于原型三环管片力学加载试验对异形盾构管片环向接头弯矩传递系数进行研究,研究结果表明:1)随埋深增加,异形盾构管片结构整体刚度提升,但由于各接头刚度与相邻管片结构刚度比随埋深增加变化规律不一致,异形盾构管片接头弯矩传递能力呈部分减弱部分增强的现象;2)同埋深条件下,随着侧压力系数的增加,除右拱腰处接头外,其余接头弯矩传递能力随着接头刚度与相邻管片结构刚度比的增大而逐渐增强;3)随着埋深增加,各接头弯矩传递能力对侧压力系数的敏感程度逐渐减弱;4)极限破坏后,异形盾构管片内外弧面裂缝的分布规律证明了明显的弯矩传递现象。 相似文献
25.
斜抛撑支护往往在周边环境限制、开挖宽度大、环境控制要求高等复杂基坑中得到应用,其基坑变形特性与常规支护下的基坑有所不同。建立PLAXIS有限元模型分析斜抛撑下的基坑变形特性,发现其变形主要在盆式开挖过程产生,基坑围护结构呈踢脚状变形。基于这一特性,提出了坑内留坡、坑内被动区土体加固等变形控制对策,并分析了不同留坡宽度、被动区土体加固宽度及深度对基坑变形及受力特点等影响,对斜抛撑基坑设计及施工中的环境控制具有指导意义。 相似文献
26.
27.
虽然钢混凝土连续组合梁桥在支座处负弯矩区混凝土桥面板处施加了预应力,但仍然存在桥面板拉应力过大导致混凝土开裂的问题。为解决这一难题,以山东省广饶县小清河特大桥2 号主桥为例,在对钢混凝土连续组合梁桥的设计难点及其相关技术措施进行评价的基础上,基于部分组合技术及桥面板混凝土分步浇筑技术,对钢混凝土连续组合梁桥的支座处负弯矩区的受力性能进行优化设计。基于Midas Civil 有限元模型,重点对该组合梁桥负弯矩区的抗裂性、支点反力及全桥刚度进行研究。研究结果表明:同时使用部分组合技术和桥面板混凝土分步浇筑技术,桥梁营运期内负弯矩区混凝土桥面板始终受压;仅采用部分组合技术或桥面板混凝土分步浇筑技术,桥梁营运期内负弯矩区混凝土桥面板受到拉应力作用,且拉应力较大。由此可知,综合使用部分组合技术和桥面板混凝土分步浇筑技术,可以有效降低钢混凝土连续组合梁桥负弯矩区混凝土桥面板的拉应力,防止混凝土桥面板开裂,改善桥梁耐久性。 相似文献
28.
针对连续组合梁桥负弯矩区桥面板易开裂的问题, 提出了新型钢-混组合梁负弯矩区 UHPC (Ultra-High Performance Concrete) 接缝方案。 使用 Abaqus 有限元软件对试验梁的加载过程进行模拟, 并验证了有限元建模方法的正确性, 分析了 UHPC 层内配筋率、 UHPC 龄期及钢梁下翼缘钢板厚度对结构抗弯性能的影响。 研究结果表明, 新型钢-混组合梁负弯矩区 UHPC 接缝结构具有技术先进性, 配筋率的增大可提高组合梁 UHPC 接缝结构的抗弯能力, UH? PC 龄期的变化主要影响抗裂性能, 而钢梁下翼缘厚度的改变对抗弯承载力的提高作用较为明显; 为充分发挥钢筋的受拉作用, 提高结构的极限承载力, 须采取一定措施防止钢梁提前屈曲。 相似文献
29.
大跨PC连续刚构桥跨中持续下挠成因及预防措施 总被引:3,自引:0,他引:3
目前大跨PC连续刚构桥存在的主要问题是跨中的持续下挠和箱梁的开裂,从砼收缩徐变、预应力损失及箱梁的开裂三个方面分析了各自对跨中持续下挠的影响.由于影响徐变的因素多,因此精确计算徐变对跨中的下挠的影响非常困难,根据徐变产生下挠的机理提出了一些预防措施. 相似文献
30.
利用基本力学方法对钢.混凝土双面组合梁在均布荷载作用下的滑移效应进行分析,推导得到了负弯矩区上、下交界面滑移沿梁长方向的表达式,并通过算例比较了双面组合梁与传统单面连续组合梁的滑移特点。计算表明,与传统单面连续组合梁相比,钢-混凝土双面组合连续梁不仅在负弯矩区提高了截面承载力,也使截面刚度得到了提高。 相似文献