首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11489篇
  免费   799篇
公路运输   3983篇
综合类   3479篇
水路运输   2637篇
铁路运输   1753篇
综合运输   436篇
  2024年   47篇
  2023年   116篇
  2022年   199篇
  2021年   338篇
  2020年   419篇
  2019年   287篇
  2018年   244篇
  2017年   294篇
  2016年   274篇
  2015年   427篇
  2014年   852篇
  2013年   661篇
  2012年   963篇
  2011年   1092篇
  2010年   830篇
  2009年   762篇
  2008年   756篇
  2007年   990篇
  2006年   858篇
  2005年   535篇
  2004年   345篇
  2003年   214篇
  2002年   133篇
  2001年   137篇
  2000年   112篇
  1999年   48篇
  1998年   36篇
  1997年   47篇
  1996年   39篇
  1995年   35篇
  1994年   40篇
  1993年   26篇
  1992年   20篇
  1991年   20篇
  1990年   21篇
  1989年   26篇
  1988年   10篇
  1987年   7篇
  1986年   2篇
  1985年   13篇
  1984年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
城市道路交叉口交通隔离栏侵入内侧车道建筑限界,导致车辆横向偏移,增加行车风险。为了解城市平面交叉口交通隔离栏对左转车辆规避行为的影响,通过无人机采集3个设有交通隔离栏的平面交叉口车辆视频,提取车辆轨迹、速度、加速度等参数。分析交叉口出口不同车道车辆偏移和速度的分布特性,研究左转车辆规避特性。结果表明:①两侧车道上行驶的车辆更倾向于向中间车道偏移,中间车道行驶轨迹则较为稳定;②20 m的行程可供驾驶人稳定行驶方向,保持与交通隔离栏的安全横向距离;③左侧车道上85%以上车辆远离交通隔离栏行驶,平均偏移距离为0.278 m;右侧车道上60%左右车辆远离右侧行驶,平均偏移距离为0.116 m。④左转车辆在出口不同车道的速度分布存在显著差异,其中左侧车道和右侧车道上左转车辆速度分布峰值、横向加速度均值、纵向加速度均值均小于中间车道。以此提出城市道路交叉口的改善方法:①增加中分带宽度,提升路侧净距,实现左侧车道名义路权宽度与实际路权宽度一致;②增大硬质设施与驾驶人的横向距离;③开口段硬质设施优化为柔性,减弱设施心理冲击,降低驾驶负荷;④增设路面导流线和反光设施,保证诱导设施的连续性和一致性,提升方向感和速度感,从而减少规避效应过度或不足所带来的安全隐患。  相似文献   
112.
针对安川公路典型岸坡岩石试样, 分别在天然状态和饱水状态下对其进行轴压试验, 采用随机模糊法、最小二乘法和蒙特卡罗法对岩石变形参数和抗剪强度参数进行抽样取值, 并计算了相应的边坡稳定性系数。计算结果表明: 采用蒙特卡罗法抽样得到的变形参数均值、均方差与变异系数与最小二乘法基本接近, 其中均值相差仅为0.77%;采用随机模糊法抽样得到的变形参数均值、均方差与变异系数最小, 其均值较最小二乘法降低了8.60%;在抗剪强度参数抽样取值时, 利用随机模糊法得到的抗剪强度参数均值、变异系数与对应的边坡安全系数最小, 蒙特卡罗法次之, 最小二乘法最大, 其中采用随机模糊法抽样取值时边坡安全系数均值为1.243, 蒙特卡罗法取值时为1.521。相比于蒙特卡罗法, 采用随机模糊法确定的隶属度函数考虑了样本参数权重因素的影响, 反映了岸坡岩石抗剪强度参数的不确定性, 计算的岩质边坡安全系数更具有工程指导意义。  相似文献   
113.
为描述非均衡网络交通流实际成本-流量状态,考虑置存成本和路段行程时间,建立行程时间动态函数,将其引入用户均衡模型,构建基于出行总成本动态、路径流量动态、路段行程时间动态的交通流演化模型。利用简单网络,采用四阶龙格库塔方法对建立的模型进行数值模拟。动态模型弹性需求下,出行成本调整范围由大到小,趋于平衡值;路径流量迅速增加后,以较小调整范围,趋于平衡值;路段行程时间迅速增加后,逐步趋向于平衡值。固定需求下的出行成本、路径流量、路段行程时间均是反复调整多次后趋近于平衡值,调整范围缩小,次数增加。算例模拟结果表明,模型能够描述网络交通流从一种非均衡状态到另一种非均衡状态的动态调整过程。  相似文献   
114.
分析了常见的3种飞机防冰腔结构, 应用Gambit软件建立了双蒙皮防冰腔结构网格模型。采用Spalart-Allmaras湍流模型模拟热气在防冰腔内的流动状况, 采用Fluent软件进行传热效率分析, 建立了防冰腔结构参数对传热效率的重要性测度模型。通过随机响应面法建立防冰腔结构参数与传热效率的函数关系, 采用低分散性抽样法求解防冰腔结构参数的重要性测度, 建立了防冰腔结构参数的重要性测度分析流程。分析结果表明: 当笛形管中心到外蒙皮的距离从35.15mm增加到38.85mm时, 传热系数由0.505减小到0.463;当双蒙皮通道高度从2.85mm增加到3.15mm时, 传热系数由0.495减小到0.476;当射流孔孔径从1.90mm增加到2.10mm时, 传热系数从0.505减小到0.494;当射流孔角度从14.25°增加到15.75°时, 传热系数从0.476增加到0.494。防冰腔结构参数的重要性排序依次为射流孔角度、笛形管中心到外蒙皮距离、射流孔孔径、双蒙皮通道高度, 在防冰腔结构加工与装配过程中, 需要重点考虑射流孔角度与笛形管中心到外蒙皮距离这2个参数。  相似文献   
115.

运用升力线、升力面以及面元法理论为海事40 m级巡逻船设计新型螺旋桨。采用给定环量分布进行螺旋桨理论设计,并通过桨模敞水试验和实桨装船后的实船测试验证该桨的理论设计方法。实船测试主要通过2条相同船型的实船,分别加装图谱桨和理论桨进行航速、轴功率、艉部振动对比测试,用实船试航的试验数据对比分析理论桨相对图谱桨的性能指标。结果表明:采用理论方法设计的螺旋桨相对原来的图谱方法,与船型匹配得更加精确,实船的螺旋桨效率约提高2%;船体艉部振动约减小5 dB。

  相似文献   
116.
  目的  为研究水下射流噪声特性,  方法  应用Lighthill声类比计算轴对称直喷管的自由射流声场特性,借助FLUENT仿真软件并采用大涡模拟法计算该直喷管的水下射流流场,最后基于混响法进行实验验证。  结果  结果表明:稳态射流流场的核心区长度与流速无关,核心区长度约为喷管直径的8倍;射流噪声辐射功率与流速的8次幂成正比;不同流速下的射流噪声功率谱在低频段的差异较大,在高频段的差异则显著减小,且辐射噪声能量主要集中在低频段,但流速增加后射流噪声的主要贡献将向高频段移动。  结论  在射流噪声计算仿真方面,将大涡模拟法和Lighthill声类比相结合是一种有效的分析手段。  相似文献   
117.
工程应用中在进行鲁棒性优化设计时,要求所求出的解既要具有较高的质量,又要满足一定的鲁棒性要求。将鲁棒性优化问题转化为一个双目标的优化问题,即一个目标为解的最优性,另一个目标为解的鲁棒性,并针对一艘最大应力接近许用应力的多用途船进行基于鲁棒性的中横剖面优化设计。首先,用支持向量机的方法建立船体舱段的近似模型,用于求取舱段的最大应力,并结合蒙特卡罗积分的思想构造出表示最大应力鲁棒性的函数;随后,以最大应力最小和最大应力的鲁棒性函数值最小为目标函数,设计出一种求解鲁棒性最优解的粒子群多目标优化算法。优化结果不仅能降低船体结构的最大应力,同时还可较大程度地提高最大应力的鲁棒性,证明了该方法的可行性。  相似文献   
118.
为保障驾驶人能快速确定出口位置,城市快速路出口编号逐渐被很多城市所应用。由于国家标准未对此进行相关规定,导致我国很多城市的出口编号标志存在不惟一、样式不统一等的问题。在调研的基础上,提出了采用数字与文字相结合的编号方法能够准确反映道路特征、流向特征,并确保了出口编号的的惟一性,以无锡快速内环西快速路的出口编号标志设置为例进行了详细解析。最后通过比较设置出口编号标志前后,被测试驾驶人对快速路出口位置的识别时间的改变情况,发现50%测试者的视认性都得到了一定程度改善,验证了快速路出口编号方法的可行性和有效性。  相似文献   
119.
根据测量学原理和误差传播定律, 分析了全站仪自由设站对边量测(RDM) 法和三维坐标(3D) 量测法, 建立了2种量测法的隧道变形精度分析模型, 利用中误差评价隧道变形量测精度, 推导了2种方法量测隧道变形的中误差计算公式, 并以某三车道公路隧道为例, 对2种方法的量测精度进行了对比和验证; RDM法通过三角高程测量原理和三角余弦定理得出任意点之间的水平距离、高差和斜距, 根据任意测点之间的三角几何关系得到隧道变形; 3D量测法从任意观测点观测若干已知点的方向和距离, 通过坐标变换计算各测点坐标, 根据各测点坐标得到隧道变形。分析结果表明: 采用RDM法和3D量测法量测隧道拱顶下沉的精度评价公式相同, 而量测隧道水平收敛的精度评价公式不同, RDM法的精度优于3D量测法, 且随着全站仪到量测断面距离的增加, 差值逐渐增大, 当距离为100 m时, 两者精度差值已增大至0.43 mm; 在三车道公路隧道中, 当距离为40~60m时, 2种方法量测隧道水平收敛的精度均为最高, RDM法可达0.61~0.68mm, 3D量测法可达0.78~0.84mm; RDM法和3D量测法量测的隧道拱顶下沉曲线平滑、圆顺, 拟合度都大于0.95, 而在量测隧道净空收敛方面, RDM法的曲线拟合度大于0.9, 3D量测法的曲线拟合度小于0.9, 因此, RDM法量测精度优于3D量测法。  相似文献   
120.
分析了CNG公交客车的燃料消耗量测试参数, 确定了流量计的安装位置; 基于安装位置的固定气压范围, 考虑到驾驶节能技术水平与乘坐人数的影响, 提出了CNG质量流量的计算方法; 通过场地测试, 验证了CNG质量流量与燃料温度、燃料压力之间的非线性关系, 以及与环境温度、气瓶出口端压力的关系; 通过运营测试, 分析了CNG质量流量修正前后的差异, 并验证了测试方案的可行性。研究结果表明: 受测试气压的限制, 流量计唯一的串接位置是减压阀的出口端与低压燃气滤清器之间, CNG经过减压阀后的出口压力基本稳定在0.80~0.95 MPa之间; 在运营测试结果修正中, 驾驶节能技术的影响最大, 最大偏差可达4%, 受测公交线路的驾驶节能技术水平有87.6%的相对值介于0.9~1.1, 离散度较低; 当环境温度升速为4.0~4.3℃·h-1时, 燃料温度的变化速度基本波动于±0.61℃·h-1之间, 证明了燃料温度对环境温度的变化不敏感; 气瓶出口端压力与燃料压力没有必然联系, 其数值的减小不会影响CNG质量流量的变化; 在0.80~0.95 MPa的燃料压力下, 测试位置的CNG当量密度基本稳定在6.1kg·m-3, 连续测试30km后, CNG质量流量计算值与实测值误差小于5%;经对CNG质量流量修正后, 3辆测试车CNG质量流量的变化幅度分别为1.88%、-4.04%和1.71%, 因此, 采用CNG质量流量计算CNG消耗量更为精确。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号