首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5014篇
  免费   151篇
公路运输   81篇
综合类   482篇
水路运输   4549篇
铁路运输   19篇
综合运输   34篇
  2024年   36篇
  2023年   81篇
  2022年   116篇
  2021年   156篇
  2020年   216篇
  2019年   117篇
  2018年   98篇
  2017年   192篇
  2016年   176篇
  2015年   197篇
  2014年   282篇
  2013年   212篇
  2012年   320篇
  2011年   409篇
  2010年   306篇
  2009年   341篇
  2008年   292篇
  2007年   484篇
  2006年   421篇
  2005年   253篇
  2004年   122篇
  2003年   93篇
  2002年   50篇
  2001年   39篇
  2000年   23篇
  1999年   21篇
  1998年   13篇
  1997年   19篇
  1996年   17篇
  1995年   13篇
  1994年   10篇
  1993年   6篇
  1992年   6篇
  1991年   7篇
  1990年   4篇
  1987年   1篇
  1986年   2篇
  1985年   10篇
  1984年   4篇
排序方式: 共有5165条查询结果,搜索用时 15 毫秒
51.
基于考虑相变的热固耦合理论,采用GEO-SLOPE软件模拟地铁联络横通道水平冻结和开挖施工过程,分析地层温度场和位移场的变化规律。结果表明:隧道冻结帷幕交圈的时间约为26d,但需积极冻结到40d,冻结帷幕平均厚度达到120cm,再经过36d的维护冻结期才可实施开挖;在维护冻结期采用比积极冻结期略高的盐水温度,防止了冻土范围继续扩大,避免了隧道开挖过程中遭遇强度较高的冻土;在进行具体的冻结设计时,应结合地层和隧道轮廓线的特点,设定冻结盐水温度、冻结时间、冻结管间距和冻结管数量等参数;对比分析不同冻结帷幕保护下隧道开挖的地层位移场,结果证明冻结对抑制地层变形具有良好的效果,但需要足够的冻结时间方可将地表变形限制在可接受的范围内。  相似文献   
52.
丁仕风  周利  周亚军 《船舶力学》2021,25(6):798-807
随着大型集装箱船的发展,针对斜浪条件下扭矩载荷特性及其结构强度的分析研究日益重要.本文采用选定的某大型集装箱船开展动态载荷(DLA)分析,建立了水动力湿表面计算模型和质量模型,研究基于扭矩传递函数和主要载荷控制参数的斜浪设计波参数确定方法,分析超越概率水平对扭矩载荷计算结果的影响.考虑典型斜浪参数和超越概率水平,分析对比DLA扭矩与船舶规范(ABS和HCSR)扭矩的差异及原因,提出集装箱船扭矩载荷计算与应用的建议.在此基础上,选定3个斜浪计算工况(45°,60°和75°)开展结构强度分析,通过分析应力计算云图,研究扭矩载荷下船体结构响应的关键位置及其应力趋势.该研究可为大型集装箱船结构设计过程中船体梁扭转强度计算、舱口角隅设计、抗扭箱强度评估等方面提供有益的参考.  相似文献   
53.
刘义  邹早建  夏立  王峰 《船舶力学》2021,25(6):739-751
由于岸壁效应和浅水效应,内河船舶在限制水域作操纵运动时通常受到比在开阔水域中更大的水动力.这些水动力对船舶操纵性具有不利影响,有可能导致船舶碰撞或触底等海上事故.因此,为了在船舶设计阶段预报其操纵性能,考虑浅水效应和岸壁效应以准确计算内河船舶操纵运动水动力非常重要.本文基于CFD方法,通过对粘性绕流进行数值模拟,对长江中营运的三艘内河船舶的操纵运动水动力进行计算.首先,为了验证数值方法的可靠性,对标模KVLCC2纯横荡和纯首摇试验的水动力进行计算,并将计算结果与现有的试验数据进行对比.然后,对三艘内河船舶在不同水深下的静舵试验、纯横荡和纯首摇试验进行数值模拟,计算得到水动力及相应的线性水动力导数.最后,基于计算得到的水动力导数,获得Nomoto模型中的操纵性参数,对比分析三艘内河船舶在深浅水中的操纵性能.结果表明,本文方法可以揭示不同水深下三艘内河船舶的操纵性变化趋势.该方法可为船舶设计阶段内河船舶深浅水中的操纵性预报提供一种实用的工具.  相似文献   
54.
针对船舶舷侧结构抗碰撞问题,开展有无聚脲涂层舷侧板架落锤试验研究。以某型舰船结构为依据建立舷侧板架有限元模型,利用瞬态动力学软件MSC/Dytran对模型进行数值仿真并确定落锤高度及试验工况。在此基础上,制作模型板架进行有无聚脲涂层舷侧板架落锤冲击试验,分别获得有涂层和无涂层舷侧板架在碰撞冲击载荷作用下的损伤变形、破口大小及碰撞力,对比研究聚脲材料的抗撞防护性能。结果表明,聚脲涂层的存在能够加强舷侧板架的耐撞防护性能。  相似文献   
55.
The behavior of a ship encountering large regular waves from astern at low frequency is the object of investigation, with a parallel study of surf-riding and periodic motion paterns. First, the theoretical analysis of surf-riding is extended from purely following to quartering seas. Steady-state continuation is used to identify all possible surf-riding states for one wavelength. Examination of stability indicates the existence of stable and unstable states and predicts a new type of oscillatory surf-riding. Global analysis is also applied to determine the areas of state space which lead to surf-riding for a given ship and wave conditions. In the case of overtaking waves, the large rudder-yaw-surge oscillations of the vessel are examined, showing the mechanism and conditions responsible for loss of controllability at certain vessel headings.List of symbols c wave celerity (m/s) - C(p) roll damping moment (Ntm) - g acceleration of gravity (m/s2) - GM metacentric height (m) - H wave height (m) - I x ,I z roll and yaw ship moments of inertia (kg m2) - k wave number (m–1) - K H ,K W ,K R hull reaction, wave, rudder, and propeller - K p forces in the roll direction (Ntm) - m ship mass (kg) - n propeller rate of rotation (rpm) - N H ,N W ,N R hull reaction, wave, rudder, and propeller - N P moments in the yaw direction (Ntm) - p roll angular velocity (rad/s) - r rate-of-turn (rad/s) - R(,x) restoring moment (Ntm) - Res(u) ship resistance (Nt) - t time (s) - u surge velocity (m/s) - U vessel speed (m/s) - v sway velocity (m/s) - W ship weight (Nt) - x longitudinal position of the ship measured from the wave system (m) - x G ,z G longitudinal and vertical center of gravity (m) - x S longitudinal position of a ship section (S), in the ship-fixed system (m) - X H ,X W ,X R hull reaction, wave, rudder, and propeller - X P forces in the surge direction (Nt) - y transverse position of the ship, measured from the wave system (m) - Y H ,Y W ,Y R hull reaction, wave, rudder, and propeller - Y p forces in the sway direction (Nt) - z Y vertical position of the point of action of the lateral reaction force during turn (m) - z W vertical position of the point of action of the lateral wave force (m) Greek symbols angle of drift (rad) - rudder angle (rad) - wavelength (m) - position of the ship in the earth-fixed system (m) - water density (kg/m3) - angle of heel (rad) - heading angle (rad) - e frequency of encounter (rad/s) Hydrodynamic coefficients K roll added mass - N v ,N r yaw acceleration coefficients - N v N r N rr N rrv ,N vvr yaw velocity coefficients K. Spyrou: Ship behavior in quartering waves - X u surge acceleration coefficient - X u X vr surge velocity coefficients - Y v ,Y r sway acceleration coefficients - Y v ,Y r ,Y vv ,Y rr ,Y vr sway velocity coefficients European Union-nominated Fellow of the Science and Technology Agency of Japan, Visiting Researcher, National Research Institute of Fisheries Engineering of Japan  相似文献   
56.
Transfer functions are often used together with a wave spectrum for analysis of wave–ship interactions, where one application addresses the prediction of wave-induced motions or other types of global responses. This paper presents a simple and practical method which can be used to tune the transfer function of such responses to facilitate improved prediction capability. The input to the method consists of a measured response, i.e. time series sequences from a given sensor, the 2D wave spectrum characterising the seaway in which the measurements are taken, and an initial estimate of the transfer function for the response in study. The paper presents results obtained using data from an in-service container ship. The 2D wave spectra are taken from the ERA5 database, while the transfer function is computed by a simple closed-form expression. The paper shows that the application of the tuned transfer function leads to predictions which are significantly improved compared to using the transfer function without tuning.  相似文献   
57.
本文采用有限元软件ABAQUS建立了船舶撞击高桩码头群桩的空间有限元模型。通过计算评估了撞击力、桩体刚度、撞击位置和撞击角度下对群桩结构损伤位置的影响。基于人工神经网络(ANN)方法,对不同参数组合下的群桩结构损伤位置进行了预测,并对ANN方法的可行性进行了评估。  相似文献   
58.
邹韵  卜仁祥  李宗宣 《船舶工程》2020,42(10):101-104
针对船舶运动系统中内部动态不确定和外部干扰等问题,进行了欠驱动船舶路径跟踪的自抗扰方法研究。利用Backstepping设计参考航向角,并通过线性扩张状态观测器对流干扰和横向运动引起的横向漂移进行估计。其次,根据自抗扰算法对航向进行控制,采用线性扩张状态观测器对外界干扰及内部不确定项进行估计。最后仿真结果表明,在风流干扰下所设计的控制器仍能使船准确地跟踪上参考路径,验证了所提控制方案的有效性。  相似文献   
59.
Environmental contours are often applied in probabilistic structural reliability analysis to identify extreme environmental conditions that may give rise to extreme loads and responses. They facilitate approximate long term analysis of critical structural responses in situations where computationally heavy and time-consuming response calculations makes full long-term analysis infeasible. The environmental contour method identifies extreme environmental conditions that are expected to give rise to extreme structural response of marine structures. The extreme responses can then be estimated by performing response calculations for environmental conditions along the contours.Response-based analysis is an alternative, where extreme value analysis is performed on the actual response rather than on the environmental conditions. For complex structures, this is often not practical due to computationally heavy response calculations. However, by establishing statistical emulators of the response, using machine learning techniques, one may obtain long time-series of the structural response and use this to estimate extreme responses.In this paper, various contour methods will be compared to response-based estimation of extreme vertical bending moment for a tanker. A response emulator based on Gaussian processes regression with adaptive sampling has been established based on response calculations from a hydrodynamic model. Long time-series of sea-state parameters such as significant wave height and wave period are used to construct N-year environmental contours and the extreme N-year response is estimated from numerical calculations for identified sea states. At the same time, the response emulator is applied on the time series to provide long time-series of structural response, in this case vertical bending moment of a tanker. Extreme value analysis is then performed directly on the responses to estimate the N-year extreme response. The results from either method will then be compared, and it is possible to evaluate the accuracy of the environmental contour method in estimating the response. Moreover, different contour methods will be compared.  相似文献   
60.
Marine transportation is a vital component of the world’s economy and transportation network. The number of people using passenger ships around the globe is increasing worldwide. Similar to other transportation systems, passenger safety is critical in maritime shipment. As emergency evacuation processes for ships are highly different from and more complicated than those for buildings and other vehicles, many researchers have published a vast range of documents related to this peculiar research area. However, there is a tangible lack of sufficient literature review studies that investigate marine emergency evacuation (MEE). That being the case, the potential of marine transportation and the effect of emergency evacuation operation on life safety have inspired the proposal of this study. This paper offers a review of the available literature on MEE modelling, analysis and planning during the period from 1973 to 2017 using a systematic approach. After reviewing relevant academic journals, peer-reviewed conference papers, and technical reports of agencies, relevant literature is analysed. In addition, the literature review is extended by means of proposing a framework methodology which considers different possible conditions and situations during MEE. Finally, insights for ship managers and policymakers are discussed and potential future research directions are identified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号