排序方式: 共有45条查询结果,搜索用时 15 毫秒
11.
12.
13.
《智能交通系统杂志
》2012,16(4):279-291
》2012,16(4):279-291
This paper describes the conceptualisation of the in-car HMI of a driver monitoring and emergency handling system within the European Union Transport Telematics project SAVE (TR 1047). An integrated Rapid Prototyping approach using product scenarios and computer demonstration/simulation of the HMI has been applied. Expert and user tests with the demonstrator/simulator have been performed and valuable hints for the optimisation of the HMI concept have been derived. Principle problems of the HMI design of SAVE type systems have been identified. The approach has proved to be useful in the conceptualisation of the HMI of in-car telematic systems. Due to a restricted correspondence of computer simulation and reality, additional testing in driving simulators and demonstrator cars is required. 相似文献
14.
15.
以实验室船舶高压电站物理仿真系统为模型,设计一种高通讯效率的船舶高压电站监控系统。该系统以ProfiNet为基础,把网络分成三层,将核心控制器PLC和人机界面触摸屏并入工业以太网,使现场设备经现场总线与PLC实现通信,再经由PLC并入工业以太网,完成网络的创建及监控系统的统一,最终完成对船舶电站的网络控制和实时监测以及船舶电站系统故障后保护和报警等功能的实现。 相似文献
16.
17.
通过ADAMS VIEW软件建立模型,采用将弹性车轮引入轮毂电机系统的使用,通过编写接触算法解决动态接触时的高频振动问题,并通过参数优化选择,来达到如何能最大程度并且合理的降低轮芯处轮毂电机系统所受到的振动冲击目的。研究结果表明,弹性车轮的引入能够很大程度上减少通过轨缝时对轮毂电机产生的冲击,在对刚度参数进行合理的选择分析后,最高减小了78.5%的正向冲击加速度以及56.1%的负向冲击加速度。能够有效的达到减小轮毂电机冲击,降低了电机在机械方面安全性隐患的目的。 相似文献
18.
19.
David H. Weir 《国际交通安全学会研究报告》2010,34(1):16-21
The use of a driving simulator in the development of human-machine-interfaces (HMI) such as a navigation, information or entertainment system is discussed. Such use addresses the need to study and evaluate the characteristics of a candidate HMI early in the R&D and design stage to ensure that it is likely to meet various objectives and requirements, and to revise the HMI as may be necessary. Those HMI requirements include such things as usability, driver comfort, and an acceptable level of attentional demand in dual task conditions (driving while using an HMI). Typically, such an HMI involves an information display to the driver, and a means for driver input to the HMI. Corresponding simulator requirements are discussed, along with typical simulator features and components. The latter include a cab, control feel systems, visual image generator, real time scenario control (task definitions), a motion system (if provided), and data acquisition. Both fixed and moving base systems are described, together with associated benefits and tradeoffs. Considerations in the design of the evaluation experiment are discussed, including definition of primary and secondary tasks, and number of driver subjects (experimental participants). Possible response and performance measures for the primary and secondary tasks are noted, together with subjective measures such as task difficulty and ease of using the HMI. The advantages of using a driving simulator to support R&D are summarized. Some typical and example simulator uses are noted. 相似文献
20.