首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   434篇
  免费   6篇
公路运输   49篇
综合类   52篇
水路运输   266篇
铁路运输   39篇
综合运输   34篇
  2023年   16篇
  2022年   5篇
  2021年   10篇
  2020年   15篇
  2019年   5篇
  2018年   13篇
  2017年   17篇
  2016年   19篇
  2015年   23篇
  2014年   24篇
  2013年   16篇
  2012年   29篇
  2011年   24篇
  2010年   10篇
  2009年   19篇
  2008年   21篇
  2007年   32篇
  2006年   24篇
  2005年   22篇
  2004年   22篇
  2003年   15篇
  2002年   9篇
  2001年   7篇
  2000年   7篇
  1999年   7篇
  1998年   7篇
  1997年   4篇
  1996年   7篇
  1995年   6篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1985年   2篇
排序方式: 共有440条查询结果,搜索用时 15 毫秒
91.
轨道复合不平顺会对行车的安全及稳定性产生较大影响,也是影响无缝线路横向变形的一个重要因素。为研究轨道复合不平顺对无缝线路的具体影响,通过构建三维轨道框架非线性有限元模型,采用轨道框架单点(或多点)位置发生横向及竖向位移来模拟复合不平顺状态,通过计算获取节点位移变化规律,进而分析轨道复合不平顺对无缝线路横向变形的影响作用。研究结果表明,轨道的复合不平顺会对无缝线路的横向变形产生显著的影响;当线路出现三角坑等类似病害时,其节点位移变化更为显著,在无缝线路的日常养护维修中应尤为注意。  相似文献   
92.
The increasing complexity and size in cruise ships demands for lightweight structures and practical but accurate design methods. Conventionally, the focus has been on the steel parts of the ship, as they make most of its weight. However, the proportions of other materials are increasing. Therefore, this study attempts to provide better understanding how one could reach the lightweight designs of insulating glass units (IGUs) in ships. These are windows where at least two glass panes are separated by a hermetically sealed cavity. They are thin-walled structures that benefit not only from the geometrically nonlinear behavior, but also from the load sharing. Considering these effects, their behavior is studied using the nonlinear Finite Element Method and Particle Swarm Optimization. Different design criteria are imposed on the thickness determination of the glass panes with different shapes. Rectangular, triangular, and circular shapes are considered. The results show that the triangular shapes have the least weight for a given area when the deflection criterion is the dominating one. When maximum principal stress is the thickness defining criterion, the shapes perform almost equally well. The ratio between the pane thicknesses had the most influence on the behavior of the IGU. As it increases, i.e., one pane is significantly thicker than the other, the load sharing percentage drops, but it provides the most lightweight solution. Closer it is to 1, more equally the structural stresses are divided between the panes, i.e., redundancy is achieved. Finally, it is possible to establish a simple but effective method for the thickness determination of these IGUs using the results of this study. However, more work is required, including numerical analysis and experimental testing.  相似文献   
93.
In various engineering fields like aerospace and aircraft structures or marine and offshore platforms, constitutive material of critical components should be made of specific materials that can work properly in the required workspace. Such materials must have excellent properties such as high mechanical strength as well as great resistance to corrosion, oxidation, and creep. Inconel 625 is a superalloy that is chosen as constitutive material of critical components due to its great abilities. On the other hand, since investigating Inconel 625 pipe has not been done yet, different mechanical characteristics of using structures made of Inconel 625 should be assessed. Additionally, doing so would be necessary to gather information for current industrial affairs and also future investigations. Therefore, the nonlinear dynamic instability response of axially loaded Inconel 625 pipes is investigated in the current article. The pipe structure is modeled via the Donnell shell theory and nonlinear von Kármán theory. The motion equations of pipes are established by applying the Hamiltonian approach. Then, in order to alter the nonlinear derived partial differential equations into the Mathieu-Hill equation, both Navier's solution and Airy stress function are implemented. Additionally, the amplitudes of steady-state oscillation of the Inconel 625 pipe are determined by employing Bolotin's method. Eventually, the impacts of various effective parameters on the nonlinear dynamic behaviors of Inconel 625 pipes are evaluated. The results indicate static and dynamic load factors possess a remarkable effect on instability exciting areas and steady-state vibration amplitudes of pipe. Moreover, the dynamic instability response of the pipe is dependent on the radius-to-thickness and length-to-radius ratios, and also how the ratios are affected depends on the wave number.  相似文献   
94.
Vessel-shaped fish cages are mainly composed of a large floating body, aquaculture nets and a number of steel frames. Due to the large scale of vessel-shaped fish cages, the velocity field induced by the diffraction waves and radiation waves cannot be ignored in the calculation of the loads on the net and steel frames. In turn, the loads can affect the wave-induced response of the floating body and hence the radiation waves as well as the sectional forces. In this paper, a novel method is proposed to consider the coupling effect. First, considering the irregular waves in short-term periods, the global response of the floating body is calculated in the time domain by the state-space method based on potential flow theory. Meanwhile, the velocity field considering the influence of the floating body is built according to the velocity transfer function. Then, the Morison formula is used to calculate the loads on the nets and the steel frames. Finally, the coupling achieved through numerical iterations is considered in the calculation of the twine tension, load effect of connector and the global cross-section under irregular waves. It is found that the diffraction and radiation waves make a significant difference in the twine tension and connector load effect.  相似文献   
95.
The need for a Global Ocean Observing System Global (GOOS) is now widely appreciated. Parts of GOOS are currently being implemented already. In this paper, written on the request of the joint Scientific and Technical Committee of GOOS, we present some of the scientific issues that need to be addressed for the further development of the Ocean and Marine Meteorology Service module of GOOS. This module is concerned with monitoring and prediction of sea level (both tsunamis and storm surges) and wind driven waves (wind–sea and swell), among other things. For each of these we discuss the current state-of-the-art, indicate what observations are needed and make suggestions for future modelling development.  相似文献   
96.
为了提高车用电子水泵对发动机温度控制效果的稳定性,提出了一种基于温差的PID控制与壁面加热功率回归模型补偿的控制策略.通过对影响发动机当前工况产热量的相关参数进行分析,建立非线性回归模型作为水泵转速的实时补偿值,以改善温度响应延迟的缺点,在AMESim中建立整车和冷却系统模型并进行了仿真验证,结果表明:相比于单一的温差...  相似文献   
97.
In this paper we present a full-scale experimental field study of the effects of floater motion on a main bearing in a 6 MW turbine on a spar-type floating substructure. Floating wind turbines are necessary to access the full offshore wind power potential, but the characteristics of their operation leave a gap with respect to the rapidly developing empirical knowledge on operation of bottom-fixed turbines. Larger wind turbines are one of the most important contributions to reducing cost of energy, but challenge established drivetrain layouts, component size envelopes and analysis methods. We have used fibre optic strain sensor arrays to measure circumferential strain in the stationary ring in a main bearing. Strain data have been analysed in the time domain and the frequency domain and compared with data on environmental loads, floating turbine motion and turbine operation. The results show that the contribution to fluctuating strain from in-plane bending strain is two orders of magnitude larger than that from membrane strain. The fluctuating in-plane bending strain is the result of cyclic differences between blade bending moments, both in and out of the rotor plane, and is driven by wind loads and turbine rotation. The fluctuating membrane strain appears to be the result of both axial load from thrust, because of the bearing and roller geometry, and radial loads on the rotating bearing ring from total out-of-plane bending moments in the three blades. The membrane strain shows a contribution from slow-varying wind forces and floating turbine pitch motion. However, as the total fluctuating strain is dominated by the intrinsic effects of blade bending moments in these turbines, the relative effect of floater motion is very small. Mostly relevant for the intrinsic membrane strain, sum and difference frequencies appear in the measured responses as the result of nonlinear system behaviour. This is an important result with respect to turbine modelling and simulation, where global structural analyses and local drivetrain analyses are frequently decoupled.  相似文献   
98.
Unburied subsea pipelines under high-temperature conditions tend to relieve their axial compressive stress by forming localised lateral buckles. This phenomenon is traditionally studied under the assumption of a specific lateral deflection profile (mode) consisting of a fixed number of lobes. We study lateral thermal buckling as a genuinely localised buckling phenomenon by applying homoclinic (‘flat’) boundary conditions. By not having to assume a particular buckling mode we are in a position to study transitions between these traditional modes in typical loading sequences. For the lateral resistance we take a realistic nonlinear pipe-soil interaction model for partially embedded pipelines. We find that for soils with appreciable breakout resistance, i.e., nonmonotonicity of the lateral resistance characteristic, sudden jumps between modes may occur. We consider both symmetric and antisymmetric solutions. The latter turn out to require much higher temperature differences between pipe and environment for the jumps to be induced. We carry out a parameter study on the effect of various pipe-soil interaction parameters on this mode jumping. Away from the jumps post-buckling solutions are reasonably well described by the traditional modes whose analytical expressions may be used during preliminary design.  相似文献   
99.
This paper is the first of two companion papers concerning the ultimate hull girder strength of container ships subjected to combined hogging moment and bottom local loads. In the midship part of container ships, upward bottom local loads are usually larger than the downward ones. This leads to the increase of biaxial compression in the outer bottom plating and the reduction of the ultimate hull girder strength in the hogging condition. In this Part 1, the collapse behavior and ultimate strength of container ships under combined hogging moment and bottom local loads are analyzed using nonlinear finite element method. Buckling collapse behavior of bottom stiffened panels during the progressive collapse of a hull girder is closely investigated. It has been found that major factors of the reduction of ultimate hogging strength due to bottom local loads are (1) the increase of the longitudinal compression in the outer bottom and (2) the reduction of the effectiveness of the inner bottom, which is on the tension side of local bending of the double bottom. The obtained results will be utilized in the Part 2 paper to develop a simplified method of progressive collapse analysis of container ships under combined hogging moment and bottom local loads.  相似文献   
100.
Three-dimensional (3D) wave breaking around bodies of complex geometry has been numerically investigated by use of two types of Navier-Stokes solvers, namely the finite-difference and the finite-volume methods employing rectangular and curvilinear coordinate systems, respectively. Both methods employ the density-function technique to capture the free surface location and can cope with complicated free surface configurations such as breaking waves. The accuracy of the density-function method is examined through the comparison with experimental results, and it is confirmed to be satisfactory when the grid spacing and the time increment are sufficiently small. New computational methods are applied to several problems including 3D breaking waves around ships and wave diffraction around offshore structures. The computed results show good agreement with experimental results indicating that wave breaking phenomena are successfully simulated. The qualitative accuracy, however, could be improved by including the dissipating effect of breaking waves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号