首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4031篇
  免费   278篇
公路运输   1040篇
综合类   1493篇
水路运输   767篇
铁路运输   540篇
综合运输   469篇
  2024年   14篇
  2023年   32篇
  2022年   89篇
  2021年   113篇
  2020年   152篇
  2019年   111篇
  2018年   131篇
  2017年   146篇
  2016年   191篇
  2015年   183篇
  2014年   331篇
  2013年   245篇
  2012年   310篇
  2011年   357篇
  2010年   239篇
  2009年   251篇
  2008年   254篇
  2007年   316篇
  2006年   264篇
  2005年   148篇
  2004年   98篇
  2003年   65篇
  2002年   41篇
  2001年   70篇
  2000年   24篇
  1999年   30篇
  1998年   15篇
  1997年   20篇
  1996年   10篇
  1995年   6篇
  1994年   14篇
  1993年   9篇
  1992年   7篇
  1991年   3篇
  1990年   6篇
  1989年   2篇
  1988年   5篇
  1986年   1篇
  1985年   3篇
  1984年   3篇
排序方式: 共有4309条查询结果,搜索用时 78 毫秒
61.
Trip purpose is crucial to travel behavior modeling and travel demand estimation for transportation planning and investment decisions. However, the spatial-temporal complexity of human activities makes the prediction of trip purpose a challenging problem. This research, an extension of work by Ermagun et al. (2017) and Meng et al. (2017), addresses the problem of predicting both current and next trip purposes with both Google Places and social media data. First, this paper implements a new approach to match points of interest (POIs) from the Google Places API with historical Twitter data. Therefore, the popularity of each POI can be obtained. Additionally, a Bayesian neural network (BNN) is employed to model the trip dependence on each individual’s daily trip chain and infer the trip purpose. Compared with traditional models, it is found that Google Places and Twitter information can greatly improve the overall accuracy of prediction for certain activities, including “EatOut”, “Personal”, “Recreation” and “Shopping”, but not for “Education” and “Transportation”. In addition, trip duration is found to be an important factor in inferring activity/trip purposes. Further, to address the computational challenge in the BNN, an elastic net is implemented for feature selection before the classification task. Our research can lead to three types of possible applications: activity-based travel demand modeling, survey labeling assistance, and online recommendations.  相似文献   
62.
This paper provides a review of research performed by Svenson with colleagues and others work on mental models and their practical implications. Mental models describe how people perceive and think about the world including covariances and relationships between different variables, such as driving speed and time. Research on mental models has detected the time-saving bias [Svenson, O. (1970). A functional measurement approach to intuitive estimation as exemplified by estimated time savings. Journal of Experimental Psychology, 86, 204–210]. It means that drivers relatively overestimate the time that can be saved by increasing speed from an already high speed, for example, 90–130?km/h, and underestimate the time that can be saved by increasing speed from a low speed, for example, 30–45?km/h. In congruence with this finding, mean speed judgments and perceptions of mean speeds are also biased and higher speeds given too much weight and low speeds too little weight in comparison with objective reality. Replacing or adding a new speedometer in the car showing min per km eliminated or weakened the time-saving bias. Information about braking distances at different speeds did not improve overoptimistic judgments of braking capacity, but information about collision speed with an object suddenly appearing on the road did improve judgments of braking capacity. This is relevant to drivers, politicians and traffic regulators.  相似文献   
63.
Bus fuel economy is deeply influenced by the driving cycles, which vary for different route conditions. Buses optimized for a standard driving cycle are not necessarily suitable for actual driving conditions, and, therefore, it is critical to predict the driving cycles based on the route conditions. To conveniently predict representative driving cycles of special bus routes, this paper proposed a prediction model based on bus route features, which supports bus optimization. The relations between 27 inter-station characteristics and bus fuel economy were analyzed. According to the analysis, five inter-station route characteristics were abstracted to represent the bus route features, and four inter-station driving characteristics were abstracted to represent the driving cycle features between bus stations. Inter-station driving characteristic equations were established based on the multiple linear regression, reflecting the linear relationships between the five inter-station route characteristics and the four inter-station driving characteristics. Using kinematic segment classification, a basic driving cycle database was established, including 4704 different transmission matrices. Based on the inter-station driving characteristic equations and the basic driving cycle database, the driving cycle prediction model was developed, generating drive cycles by the iterative Markov chain for the assigned bus lines. The model was finally validated by more than 2 years of acquired data. The experimental results show that the predicted driving cycle is consistent with the historical average velocity profile, and the prediction similarity is 78.69%. The proposed model can be an effective way for the driving cycle prediction of bus routes.  相似文献   
64.
Estimating the travel time reliability (TTR) of urban arterial is critical for real-time and reliable route guidance and provides theoretical bases and technical support for sophisticated traffic management and control. The state-of-art procedures for arterial TTR estimation usually assume that path travel time follows a certain distribution, with less consideration about segment correlations. However, the conventional approach is usually unrealistic because an important feature of urban arterial is the dependent structure of travel times on continuous segments. In this study, a copula-based approach that incorporates the stochastic characteristics of segments travel time is proposed to model arterial travel time distribution (TTD), which serves as a basis for TTR quantification. First, segments correlation is empirically analyzed and different types of copula models are examined. Then, fitting marginal distributions for segment TTD is conducted by parametric and non-parametric regression analysis, respectively. Based on the estimated parameters of the models, the best-fitting copula is determined in terms of the goodness-of-fit tests. Last, the model is examined at two study sites with AVI data and NGSIM trajectory data, respectively. The results of path TTD estimation demonstrate the advantage of the proposed copula-based approach, compared with the convolution model without capturing segments correlation and the empirical distribution fitting methods. Furthermore, when considering the segments correlation effect, it was found that the estimated path TTR is more accurate than that by the convolution model.  相似文献   
65.
Deep neural networks (DNNs) have recently demonstrated the capability to predict traffic flow with big data. While existing DNN models can provide better performance than shallow models, it is still an open issue of making full use of spatial-temporal characteristics of the traffic flow to improve their performance. In addition, our understanding of them on traffic data remains limited. This paper proposes a DNN based traffic flow prediction model (DNN-BTF) to improve the prediction accuracy. The DNN-BTF model makes full use of weekly/daily periodicity and spatial-temporal characteristics of traffic flow. Inspired by recent work in machine learning, an attention based model was introduced that automatically learns to determine the importance of past traffic flow. The convolutional neural network was also used to mine the spatial features and the recurrent neural network to mine the temporal features of traffic flow. We also showed through visualization how DNN-BTF model understands traffic flow data and presents a challenge to conventional thinking about neural networks in the transportation field that neural networks is purely a “black-box” model. Data from open-access database PeMS was used to validate the proposed DNN-BTF model on a long-term horizon prediction task. Experimental results demonstrated that our method outperforms the state-of-the-art approaches.  相似文献   
66.
为使城市轨道交通列车运行时刻表更贴合客流需求,依据不断变化的客流需求确定每列车的发车时刻和停站时间,采用多目标优化方法构建以乘客出行时间费用和列车运行时间费用最小为目标、列车发车时刻和停站时间为决策变量的城市轨道交通动态时刻表优化模型,并采用粒子群算法求解。以广州地铁13号线为例进行验证,结果表明优化后的时刻表更满足客流需求,能有效地提高乘客出行效率,具有更好的动态适应性。  相似文献   
67.
This paper proposes different policy scenarios to cut CO2 emissions caused by the urban mobility of passengers. More precisely, we compare the effects of the ‘direct tool’ of carbon tax, to a combination of ‘indirect tools’ – not originally aimed at reducing CO2 (i.e. congestion charging, parking charges and a reduction in public transport travel time) in terms of CO2 impacts through a change in the modal split. In our model, modal choices depend on individual characteristics, trip features (including the effects of policy tools), and land use at origin and destination zones. Personal “CO2 emissions budgets” resulting from the trips observed in the metropolitan area of Lille (France) in 2006 are calculated and compared to the situation related to the different policy scenarios. We find that an increase of 50% in parking charges combined with a cordon toll of €1.20 and a 10% travel time decrease in public transport services (made after recycling toll-revenues) is the winning scenario. The combined effects of all the policy scenarios are superior to their separate effects.  相似文献   
68.
为实现空车调配与货物列车开行方案协调优化,结合基本运行图架构与车流径路,构建货运时空服务拓展网络。考虑配空与装卸取送、集编发等环节的时间接续要求,节点与区段不对流空车要求,以重车流全程运送与空车配送等广义总费用最少为目标,建立整数规划弧路模型。针对既有算法设计局限性,结合重车或空车配空的时间接续要求,提出将不同的 k 短路重车流方案与空车配空方案相关联的改进可行解构造方法,设计混合差分进化求解算法。实例研究表明,考虑空车调配进行重车、空车流组织协调优化,能够减少空车走行费用,及时满足装车需求,有效保证作业车流配合中转车流集结编组及时挂线,提高方案可实施性。  相似文献   
69.
An in-depth understanding of travel behaviour determinants, including the relationship to non-travel activities, is the foundation for modelling and policy making. National Travel Surveys (NTS) and time use surveys (TUS) are two major data sources for travel behaviour and activity participation. The aim of this paper is to systematically compare both survey types regarding travel activities and non-travel activities. The analyses are based on the German National Travel Survey and the German National Time Use Survey from 2002.The number of trips and daily travel time for mobile respondents were computed as the main travel estimates. The number of trips per person is higher in the German TUS when changes in location without a trip are included. Location changes without a trip are consecutive non-trip activities with different locations but without a trip in-between. The daily travel time is consistently higher in the German TUS. The main reason for this difference is the 10-min interval used. Differences in travel estimates between the German TUS and NTS result from several interaction effects. Activity time in NTS is comparable with TUS for subsistence activities.Our analyses confirm that both survey types have advantages and disadvantages. TUS provide reliable travel estimates. The number of trips even seems preferable to NTS if missed trips are properly identified and considered. Daily travel times are somewhat exaggerated due to the 10-min interval. The fixed time interval is the most important limitation of TUS data. The result is that trip times in TUS do not represent actual trip times very well and should be treated with caution.We can use NTS activity data for subsistence activities between the first trip and the last trip. This can potentially benefit activity-based approaches since most activities before the first trip and after the last trip are typical home-based activities which are rarely substituted by out-of-home activities.  相似文献   
70.
FPSO (floating, production, storage and offloading) units are widely used in the offshore oil and gas industry. Generally, FPSOs have excellent oil storage capacity owing to their huge oil cargo holds. The volume and distribution of stored oil in the cargo holds influence the strain level of hull girder, especially at critical positions of FPSO. However, strain prediction using structural analysis tools is computationally expensive and time consuming. In this study, a prediction tool based on back-propagation (BP) neural network called GAIFOA-BP is proposed to predict the strain values of concerned positions of an FPSO model under different oil storage conditions. The GAIFOA-BP combines BP model and GAIFOA which is a combination of genetic algorithm (GA) and an improved fruit fly optimization algorithm (IFOA). Results from three benchmark tests show that the GAIFOA-BP model has a remarkable performance. Subsequently, a total of 81 sets of training data and 25 sets of testing data are obtained from experiment using fiber Bragg grating (FBG) sensors installed on the surface of an FPSO model. The numerical results show that the GAIFOA-BP is capable of predicting the strain values with higher accuracy as compared with other BP models. Finally, the reserved GAIFOA-BP model is utilized to predict the strain values under the inputs of a 10-day time series of volume and distribution of stored oil. The predicted strain results are further used to calculate the fatigue consumption of measurement points.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号