全文获取类型
收费全文 | 267篇 |
免费 | 17篇 |
专业分类
公路运输 | 39篇 |
综合类 | 29篇 |
水路运输 | 196篇 |
铁路运输 | 14篇 |
综合运输 | 6篇 |
出版年
2024年 | 8篇 |
2023年 | 10篇 |
2022年 | 2篇 |
2021年 | 14篇 |
2020年 | 16篇 |
2019年 | 4篇 |
2018年 | 4篇 |
2017年 | 12篇 |
2016年 | 15篇 |
2015年 | 17篇 |
2014年 | 15篇 |
2013年 | 7篇 |
2012年 | 11篇 |
2011年 | 12篇 |
2010年 | 11篇 |
2009年 | 9篇 |
2008年 | 13篇 |
2007年 | 20篇 |
2006年 | 14篇 |
2005年 | 8篇 |
2004年 | 11篇 |
2003年 | 5篇 |
2002年 | 6篇 |
2001年 | 4篇 |
2000年 | 11篇 |
1999年 | 7篇 |
1998年 | 5篇 |
1997年 | 2篇 |
1996年 | 2篇 |
1995年 | 3篇 |
1994年 | 2篇 |
1992年 | 2篇 |
1988年 | 1篇 |
1985年 | 1篇 |
排序方式: 共有284条查询结果,搜索用时 15 毫秒
251.
The NW Mediterranean experiences, as illustrated by the last decade, strong and rapidly varying storms with severe waves and winds. This has motivated a continuous validation of models and the efforts to improve wave and wind predictions. In this paper we use two atmospherics models, MASS (from SMC-Meteorological Office of Catalunya) and ARPEGE (from Météo-France), to force two third generation wave models: WAM and SWAN. The evaluation and comparison has been carried out for two severe storms registered in November 2001 and March–April 2002.The ARPEGE and MASS models predicted higher 10 m wind speeds than coastal meteorological stations, a fact attributed to local land influences. Regarding the 10 m wind direction, models do not present large differences, although considerable deviations from recorded data were found during some dates. ARPEGE presents less scatter and lower errors than MASS when compared with QuikSCAT data.The 10m wind fields from both atmospheric models were used to force the two selected wave models and analyse the errors and sensitivities when predicting severe wave storms. The wave model simulations show some interesting results; during the storm, the spatial wave pattern using ARPEGE showed a higher maximum, although the values of significant wave height at the buoys were lower than the ones forced by MASS (with both WAM and SWAN). The SWAN simulations show a better agreement in predicting the growing and waning of the storm peaks. The prediction of mean period was improved when using the ARPEGE wind field. However the underestimation by SWAN due to the large energy at high frequencies was evident. Validation of spectral shape predictions showed that it still has considerable error when predicting the full frequency spectra. The storms showed bimodal spectral features which were not always reproduced by wave models and are likely to be responsible for part of the discrepancies. 相似文献
252.
从验收要求、验收规则、验收程序和验收方法4个方面对钢质浮标(浮体)的验收办法进行了分析,为了方便浮标使用单位做好钢质浮标(浮体)验收记录工作、界定停止验收的条件,编制了钢质浮标(浮体)验收记录表,使验收工作具有了可操作性。 相似文献
253.
Richard P. Signell Sandro Carniel Luigi Cavaleri Jacopo Chiggiato James D. Doyle Julie Pullen Mauro Sclavo 《Journal of Marine Systems》2005,53(1-4):217-233
The quality of surface winds derived from four meteorological models is assessed in the semi-enclosed Adriatic Sea over a 2-month period: a global hydrostatic model ECMWF T511 (40 km resolution), a hydrostatic limited area model LAMBO (20 km), and two non-hydrostatic limited area models: LAMI (7 km) and COAMPS™ (4 km). These wind models are used to drive a 2 km resolution wave model (SWAN) of the Adriatic, and wind and wave results are compared with observations at the ISMAR oceanographic tower off Venice. Waves are also compared at buoy locations near Ancona and Ortona. Consistently with earlier studies, the ECMWF fields underestimate the wind magnitude and do not reproduce the known spatial structure of strong wind events. The results show that the higher-resolution, limited area models LAMI and COAMPS exhibit better amplitude response than the coarser ECMWF: there is a 3- to 4-fold reduction of the wind underestimation at the platform (from 36% to 8–11%). The wave response is also improved with LAMI and COAMPS: there is a 2-fold reduction in the underestimation of wave heights at the platform. These non-hydrostatic models also produce wind fields with more realistic small-scale, spatial structure during strong wind events. The temporal correlation between observed and modelled wind, however, is highest with the global ECMWF model due to the fact that large-scale features can be predicted deterministically, whereas small-scale features can only be predicted stochastically. Models with less small-scale structure have better correlation because they have less “noise.” This explanation is supported by increased correlation between modelled and observed waves, the waves representing a smoothing of the wind over fetch and duration. Although there is room for improvement, the high-resolution, non-hydrostatic models (LAMI and COAMPS) offer significant advantages for driving oceanographic simulations in semi-enclosed basins such as the Adriatic Sea. 相似文献
254.
Submerged floating tunnel (SFT) is an innovative cable-supported structural system for crossing deep and long-distance ocean environments. In the complex ocean environment, the construction of SFT needs to consider wave and current forces. Specific construction measures and control also require in-depth study and understanding of the dynamic response of SFT under such environmental loads. In this study, the dynamic response of SFT and cable forces under the action of waves alone and wave-current interactions are investigated by using a large wave-current basin. A total of 138 regular wave and wave-current cases were conducted during the experiments, and the influence of waves and wave-current interactions on the dynamic response of SFT and cable forces are discussed in detail by combining experimental data with corresponding analysis. Results show that the wave height, current velocity, and ratio of wavelength to structure size are important factors affecting the dynamic response of SFT and cable forces. The multi-anchor cable arrangement used in the present experimental tests distribute cable force more effectively and reduce the potential safety hazard caused by cable breakage. This study can provide a useful reference for the construction and control of the single SFT segment under construction in a complex ocean environment, especially under the interaction of waves and currents. 相似文献
255.
A methodology for estimating extreme response statistics for marine structures, that takes both the long-term variability of the metocean environment and the short-term variability of response into account is presented. The proposed methodology uses Gaussian process regression to estimate parameters of the short-term response distribution, based on output from computationally expensive hydrodynamic simulations. We present an adaptive design strategy for sequential updating of the model, focusing on the metocean conditions that contribute the most to the long-term extreme. With this approach, only a limited number of hydrodynamic simulations are needed.The suggested approach is demonstrated on the problem of estimating the 25-year extreme vertical bending moment on a ship. We show that a relatively small number of iterations (full hydrodynamic simulations) are needed to converge toward the “exact” results obtained by running a large number of simulations covering the entire range of sea states.The results suggest that the proposed method can be used as an alternative to contour-based methods or other methods that consider a few sea states using accurate numerical simulations, with little or no added complexity or computational effort. 相似文献
256.
257.
Semi-submersible platform has been widely used in offshore oil exploitation due to its excellent performance, but can be attacked by wave impact loads in extreme ocean environments. Determining wave impact loads accurately is of great significance to the design and operation of offshore structures. An experimental study was carried out to investigate the critical governing parameters for the horizontal wave impact loads on a semi-submersible. The wavelet denoising technique and the frequency response function method are employed successfully to remove the effect of noise and dynamic contamination from the experimental data. The strongly nonlinear characteristics of the wave impact load are demonstrated. The results show that wave impact events are governed by the upwell height and upwell velocity. Most major wave impact events occur where both the two parameters are large, and the upwell velocity is more dominant in the wave impact process. In general, larger parameters tend to result in larger peak pressures and higher probabilities of wave impacts. The motion behaviors of the platform are benefit to reduce the occurrence probabilities of wave impact events and maximum impact pressures, owing to the escape velocities following the wave direction and the rotations leading to the above-water structure away from the waves. The insights given in this study provide a motivation and foundation for developing a sophisticated prediction model of the wave impact load on floating platforms. 相似文献
258.
Recently, various approaches have been introduced to estimate the response of offshore structures in different sea states by stepwisely intensifying records. In this article, a more practical approach entitled Modified Endurance Wave Analysis (MEWA) considering the random and probabilistic nature of wave loading and utilizing optimal time duration is introduced. Generation procedure of this approach is described based on two practical wave theories: random and constrained new-wave. In addition, assessment of a simplified model representing a typical fixed offshore platform under extreme wave conditions in the Persian Gulf is performed making use of MEWA. A comparative analysis has been also carried out to investigate the accuracy and computational costs of MEWA. The results indicate that MEWA can be a time-saving and also reliable method both in design and assessment of offshore platforms. 相似文献
259.
260.
针对后视镜引起的前侧窗与车内气动噪声问题,采用计算流体力学(CFD)方法对某商用车进行车外后视镜区域数值模拟和车内噪声预测的研究。稳态分析采用RANS模型中SST(Menter)k-ω模型,瞬态分析采用基于SST(Menter)k-ω的分离涡模拟(DES);通过分析后视镜侧窗区域的稳态静压力与瞬态动压力、速度和涡量云图,揭示了因A柱-后视镜而产生车窗表面的湍流压力脉动的机理;同时求解瞬态流场获得两侧车窗表面湍流压力脉动载荷。采用声学FEM方法将车窗表面湍流压力脉动作为边界条件来计算气动噪声的传播,基于车内声学空间不同频率的声压级云图分布规律,说明了车内气动噪声主要集中在中低频段和声压级最大的分布区域;驾驶员左耳旁声压级曲线展示了20-2 500 Hz频段内声压级变化规律。最后进行实车道路滑行测试,证实了气动噪声在车速80-110 km/h时较为明显的结论;采用CFD结合声学有限元的方法可较为准确地预测车内100-2 500 Hz气动噪声的声压级,为优化后视镜、降低驾驶室内气动噪声提供仿真和试验的技术方案。 相似文献