首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   517篇
  免费   1篇
公路运输   56篇
综合类   49篇
水路运输   351篇
铁路运输   48篇
综合运输   14篇
  2024年   2篇
  2023年   14篇
  2022年   6篇
  2021年   31篇
  2020年   31篇
  2019年   13篇
  2018年   14篇
  2017年   25篇
  2016年   22篇
  2015年   30篇
  2014年   40篇
  2013年   13篇
  2012年   41篇
  2011年   39篇
  2010年   25篇
  2009年   34篇
  2008年   21篇
  2007年   28篇
  2006年   24篇
  2005年   15篇
  2004年   4篇
  2003年   7篇
  2002年   4篇
  2001年   7篇
  2000年   6篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   6篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1988年   1篇
  1985年   1篇
排序方式: 共有518条查询结果,搜索用时 31 毫秒
511.
512.
为使"渤船"第五代苏伊士船型具有良好的操纵性能,提高市场竞争力,对船体设备舵装置设计方案和实际选型计算进行研究和讨论。对多个舵选型公式进行对比,在完成船型研发任务的同时形成一套合理的舵系设计流程:参考同类型先进船型信息,结合规范要求和水池方意见,确定舵装置设计参数。该设计流程可在较大程度上提高工作效率和质量,为快速研发新船型提供支持。  相似文献   
513.
OC4半潜浮式风机综合性能较好,但其浮式基础结构质量和结构复杂性使其建造成本高昂,而WindFloat半潜浮式风机浮式基础具有结构简单、建造成本低和减摇效果好等优点,但是适应水深较小且只适合特定海域。结合OC4和WindFloat半潜浮式风机浮式基础的结构特点,针对200 m水深环境设计OC4-WindFloat半潜浮式风机基础。基于叶素理论、莫里森公式和势流理论,通过有限元软件对OC4-WindFloat半潜浮式风机的固有周期及风浪联合作用下的动态响应进行耦合分析,并与OC4半潜浮式风机结果进行对比研究。结果显示,OC4-WindFloat半潜浮式风机固有周期及动态响应均满足相关规定,且具有比OC4更低的建造成本,相比WindFloat可适用更深的海域。研究结果对于浮式基础型式研究有一定的指导意义。  相似文献   
514.
New and efficient installation concepts which can reduce the cost of developing an offshore wind farm are of particular interest. This paper explores a promising concept using the small water-plane area twin-hull vessel (SWATH) to install pre-assembled wind turbines (OWT) onto floating spar foundations. A focus is placed on the hydrodynamic performance of the SWATH and the response analysis of the coupled SWATH-spar system. Firstly, the numerically calculated difference-frequency wave force effect and damping forces of the original SWATH were verified with experimental data. Secondly, the original SWATH was modified to satisfy the criteria of weight-carrying capacity and hydrostatic stability. Thirdly, a multibody numerical model for the SWATH-spar system was developed, in which the hydrodynamic and mechanical couplings between the SWATH and a spar were considered. The SWATH is equipped with a dynamic positioning system to counteract the slow-drift wave force effects. The nonlinear time-domain simulations were carried out for the mating stage when a wind turbine is lifted above the spar foundation. Based on the analysis of statistics of the relative displacement and velocity of the tower bottom and the spar top, the installation concept with SWATH is found to be of decent performance. Finally, recommendations are provided for future research on this concept, which contributes to developing next-generation installation concepts for bottom-fixed and floating wind farms.  相似文献   
515.
With the gradual implementation of offshore wind energy production, the future tendency is to expand into the deeper water. The jacket foundations will take the place of the present monopile foundations when the water depth increases. The foundations account for the majority of the construction cost for offshore wind farms, and the structural optimization of jackets will bring lucrative economic benefits. Structural optimization is a complex iterative process that requires huge computing costs. Therefore, this paper proposes a structural optimization method based on surrogate models to solve this problem effectively and swiftly obtain optimized design schemes of lightweight jackets for offshore wind turbines. The structural responses of jacket wind turbine systems under the equivalent static extreme loads with a recurrence period of 50 years are mainly considered in structural optimization design, and the key optimization variables of jackets are determined by parameter sensitivity analysis. The finite element models of jackets are transformed into surrogate models, and the genetic algorithm is employed to optimize the surrogate models directly. The optimized jackets are additionally verified through coupled dynamic analysis, besides, buckling strength and fatigue life are also checked. And local refined optimizations are carried out for the failure members. According to the optimized design schemes of lightweight jackets for 30 m, 50 m and 70 m water depths, it is demonstrated that the structural optimization design method is adequate and efficient for jackets of wind turbines. Parameter sensitivity analysis can cut the number of optimization variables in half to improve the optimization efficiency. Furthermore, the application of surrogate models can significantly speed up the optimization process by saving about 98.61% of the original time consumed. The optimization design method of the jackets for offshore wind turbines proposed in this paper is suitable for practical engineering, with high precision and efficiency.  相似文献   
516.
For offshore structures such as offshore wind turbines (OWT), typhoon is usually considered one of the most critical threats to structural safety performances and service life due to its heavy wind, wave, and even coexisted storm surge. Meanwhile, it is challenging to obtain the systematic data from the environmental conditions, structural dynamic vibrations and the SCADA record, when typhoon passes by the offshore wind farm. Taking into account these situations, a real-time multi-source monitoring system enabling the investigation of the typhoon impact on the performances of OWT, has been firstly established and implemented to a 4.0 MW mono-pile OWT in Rudong, Jiangsu, China. One of the major contributions in this work is to develop the monitoring system using a unique environment of real-world data that has been synchronously obtained from waves, winds, vibrational accelerations, inclinations of towers and SCADA data during the typhoon “In-fa” passing by the wind farm, and provide the scientific community with the underlying standards and technical recommendations. To investigate the influence caused by “In-fa”, comparison results of the measured data in the range of June to August have been analysed. It is worth noting that two conclusions have been obtained: (1) the region near the nacelle is not always the most critical vibrational area. Actually, the change of the maximum structural response in the position under different external loads should be applied to effectively evaluate the structural safety; (2) the measured accelerations exhibit an obvious decay process in the presence of the turbine rotor-stop, but not the yaw rigid-body motion. This observation promotes the accurate identification of modal parameters for the long-term monitoring. Consequently, these valuable findings to facilitate the assessment of structural operational conditions have been developed into two guide-lines. All the data and analyses presented in this paper provide a valuable insight into the design, energy efficiency, safety monitoring and damage diagnosis of OWT structures.  相似文献   
517.
The assembly and installation costs account for a large share in the overall expenditures of an offshore wind farm project. Single blade installation is suitable for large scale wind turbines due to the lower crane capability requirement and lower transportation time. By introducing active tension control on the tugger lines, an automatic single blade installation approach can accomplish operations in higher sea states, reduce the waiting-on-weather time, and improve the operational efficiency. Compared to early research, a more complicated control objective is achieved in this paper, i.e., a two-tugger-line configuration is applied to stabilize the suspended blade in three degrees of freedom during crane rotation and blade root-hub mating processes. The pulleys on the crane boom, i.e., the ends of the tugger lines, are assumed to be fixedly placed, resulting in tugger line time-varying inclinations. A novel backstepping-like controller is designed and proved. It is able to stabilize the blade around its equilibrium and make it track the desired path. Sensitivity studies are conducted to evaluate the influence of the tugger line inclinations. In addition, the influence of the installed blades on a three-blade horizontal wind turbine with a monopile foundation is discussed. The proposed active control setup improves the installation success rate and reduces the risks for blade impacts that may occur during mating.  相似文献   
518.
Grouted connections (GCs) are widely used to connect superstructures and driven piles in offshore wind turbine structures. They resist fatigue loading in marine splash zones and even submerged environments. In this paper, six GC segment specimens were designed and tested under fatigue loading in both the air and water ingression conditions. The results in the air condition showed that for the specimens with lower loading ranges, the strain distributions and residual displacements stabilized after 20 thousand load cycles. These conditions persisted until the end of the test with two million cycles, with only a few tiny cracks appearing on the grout material surface. Meanwhile, wide cracks and grout material exfoliation were found in specimens with higher loading ranges. The residual displacement accumulated gradually, which eventually caused the termination of the test when it reached 5 mm after 1.3 million cycles. The results in the water ingression condition showed that the water had entered into the micro-cracks of the grout material, which severely degraded the fatigue behavior of the GC specimens. Even in lower loading ranges, specimens W-1 and W-2 only endured 0.264 million and 64 thousand load cycles before the displacement of the top clamp reached −10 mm. Compared with two specimens tested in the air, with a total displacement of less than −0.7 mm after two million load cycles, the severe deteriorating effect of water ingression on the fatigue behavior of GCs was apparent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号