首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   507篇
  免费   2篇
公路运输   5篇
综合类   24篇
水路运输   480篇
  2023年   3篇
  2022年   9篇
  2021年   10篇
  2020年   24篇
  2019年   16篇
  2018年   10篇
  2017年   30篇
  2016年   31篇
  2015年   33篇
  2014年   40篇
  2013年   18篇
  2012年   27篇
  2011年   38篇
  2010年   24篇
  2009年   34篇
  2008年   23篇
  2007年   36篇
  2006年   41篇
  2005年   16篇
  2004年   5篇
  2003年   5篇
  2002年   7篇
  2001年   5篇
  2000年   3篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1991年   3篇
  1990年   1篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
排序方式: 共有509条查询结果,搜索用时 62 毫秒
321.
The hydrodynamic performance of a propeller in unsteady inflow was calculated using the surface panel method. The surfaces of blades and hub were discreted by a number of hyperboloidal quadrilateral panels with constant source and doublet distribution. Each panel's corner coordinates were calculated by spline interpolation between the main parameter and the blade geometry of the propeller. The integral equation was derived using the Green Formula. The influence coefficient of the matrix was calculated by the Morino analytic formula. The tangential velocity distribution was calculated with the Yanagizawa method, and the pressure coefficient was calculated using the Bonuli equation. The pressure Kutta condition was satisfied at the trailing edge of the propeller blade using the Newton-Raphson iterative procedure, so as to make the pressure coefficients of the suction and pressure faces of the blade equal at the trailing edge. Calculated results for the propeller in steady inflow were taken as initialization values for the unsteady inflow calculation process. Calculations were carried out from the moment the propeller achieved steady rotation. At each time interval, a linear algebraic equation combined with Kutta condition was established on a key blade and solved numerically. Comparison between calculated results and experimental results indicates that this method is correct and effective.  相似文献   
322.
全方向推进器非定常水动力性能的面元预报方法   总被引:3,自引:0,他引:3  
常欣  黄胜  贡毅敏 《中国造船》2007,48(1):24-29
研究了全方向推进器非定常水动力性能的面元预报方法,基于螺旋桨面元法建立了全方向推进器的非定常水动力性能计算的数学模型,对全方向推进器的非定常水动力性能进行了数值预报。采用了关于扰动速度势的基本积分微分方程,并采用双曲面元以消除面元间的缝隙。用Newton-Raphson迭代过程在桨叶随边满足压力Kutta条件。在计算面元的影响系数时,应用Morino导出的解析计算公式加快了数值计算的速度。为避免数值求导中的奇异性,用Yanagizawa方法求得物体表面上的速度分布。本文计算结果与日本水池模型试验结果、升力线方法计算结果及升力面方法计算结果进行了对比。  相似文献   
323.
负荷控制就是把调距桨作为主机负荷的调节器。在主机转向和转速一定的情况下,通过改变调距桨桨叶角度实现主机负荷的增大和减小,保持主机的负荷与转速关系沿设定的负荷曲线变化,以改善舰船在不同航行工况下的主机推进效率和舰船操纵性能.文中在介绍负荷控制原理的基础上,将模糊控制方法应用到负荷控制中,并进行仿真验证了模糊控制负荷控制器的有效性.  相似文献   
324.
面元法预估导管螺旋桨定常性能的一种简便方法   总被引:2,自引:0,他引:2  
用基于速度势的低阶面元法建立预估导管螺旋桨定常性能的计算方法,即对导管和螺旋桨都采用面元法,在计算面元的影响系数时计入导管和螺旋桨的相互影响。将对JD简易导管桨的计算与实验结果进行比较表明,该方法可以有效地应用于导管桨的定常性能计算。  相似文献   
325.
船舶轴系的动态校中计算   总被引:3,自引:0,他引:3  
耿厚才 《中国造船》2006,47(3):51-56
利用有限元建模与数值计算相结合的方法,进行了船舶轴系的动态校中计算。在计算过程中,针对某一具体船型,考虑了螺旋桨动态变化的作用力、轴承油膜的动力特性以及支承与船体的刚度。实船测试的结果表明所建立的动态校中模型是可信的。利用已建立的动态校中模型,计算了多种工况的轴承动反力,讨论了不同转速、不同工况下轴承动反力的变化趋势,得到了一些有价值的结论,给生产实际提供了理论指导。  相似文献   
326.
在船舶轴系振动或桨轴流固耦合分析中,螺旋桨在流场中所引起的附连水质量与阻尼是很重要的参数。但实际计算中螺旋桨附连水质量常常用螺旋桨自身质量乘以一个经验系数得到,而附加阻尼往往被忽略。针对这些不足,文章利用螺旋桨水动力分析中常使用的面元法,构建了螺旋桨随轴系在水中振动时的附加质量与阻尼数值计算方法。目前求解附加质量的经典方法是基于运动物体引起流体动能变化来求解,但该方法不能求解附加阻尼。文中证明了所提出的方法与经典方法是完全等价的,同时利用该方法还可以求解附加阻尼。最后以球体、椭球体及螺旋桨为对象给出几个算例,并与解析解或其它文献计算结果比较,误差均在合理范围内,表明文中提出的方法的有效性。  相似文献   
327.
船舶航行时,附在转轴上的螺旋桨通常做复杂的空间运动。这是因为一方面螺旋桨和转轴不可避免地存在偏心,使得在不平衡激励下转轴在绕自身中心线旋转的同时又发生空间涡动(又称为进动);另一方面,螺旋桨通常工作在不均匀的流场中(即使来流均匀,轴系涡动亦会导致流场的不均匀),桨叶表面的脉动力也会导致转轴的空间振动。对具有复杂三维运动的螺旋桨的水动性能预报是一个难点。本文建立了螺旋桨在流场中随轴系做复杂空间运动时的水动力预报数学模型,并利用不定常面元法求解了这一问题。该方法按时间步顺序求解,考虑了不均匀流场、轴系振动、尾涡的非线性运动及卷曲等因素。利用本文提出的方法并结合结构动力学模型,可以方便地研究流体-螺旋桨-轴系双向流固耦合等问题。同时该方法也可以用来预报船舶转弯、船舶升沉及纵摇振荡、螺旋桨启停及加速等复杂工况下的螺旋桨水动性能。文中通过一个算例验证了算法的有效性。最后,预报了轴系纵向振动幅值为1 mm,振动频率为3 Hz并伴有微量回旋振动时所引起的4381螺旋桨的脉动力。研究表明推力脉动分量大约为其静态分量的4.5/1 000,扭矩脉动分量大约为其静态分量的4/1 000。  相似文献   
328.
巨俪  窦培林 《船舶工程》2019,41(11):51-55
船舶总是会因其动力源、推进器、波浪以及其他外部激励的作用而产生振动,甚至有害振动。文章通过有限元方法对某电力推进内河船不同功能区结构进行螺旋桨和主机激励作用下的振动响应计算,对比螺旋桨和主机激励作用下不同功能区的振动响应,并判断振动产生的速度及加速度幅值是否符合CCS相关规定的要求。结果表明,在螺旋桨激励作用下,不同功能区振动响应远大于主机激励作用下的振动响应,电力推进装置所产生激振力对电力推进船舶的振动几乎没有影响。由此,对电力推进系统助推的船舶振动计算分析及该类船的设计提供一定的参考。  相似文献   
329.
孔为平  王建强  丁举 《船舶》2019,30(1):112-118
为研究低速大推力导管桨水动力性能,应用商业软件Fluent,采用RANS方法结合k-ω湍流模型,开展了对原型和改型导管桨敞水状态下的数值计算。采用多运动参考坐标框架(MRF)技术,通过局部网格加密,来模拟桨叶和导管间的间隙流动。重点考察了设计工况点的水动力性能,压力分布等,通过计算分析,对导管桨(包括桨叶、导管以及前后定子)进行了优化设计。研究发现,导管桨在低速高负荷状态下,桨叶吸力面叶梢附近有很大的低压区。提高导管推力占比,可较大幅度提升推进效率。优化后置定子,能使效率得到一定提升。相关结果进行了试验验证,吻合良好,表明该数值研究方法可靠,具有广阔的工程应用前景。  相似文献   
330.
刘芳远  傅慧萍  李杰 《船舶力学》2019,23(4):388-396
以PPTC(Potsdam Propeller Test Case)桨为研究对象,探索了螺旋桨梢涡及梢涡空泡的数值模拟方法。通过梢涡区域的划分及网格加密,对螺旋桨无空化流场进行了数值模拟,成功捕获了梢涡;然后基于均质混合流模型和Zwart-Gerber-Belamri空化模型对空化流场进行了数值模拟;并将计算结果与试验数据进行了广泛的比较和分析,以校验计算网格和计算方法。研究表明:无论片空泡还是梢涡空泡的计算结果均与试验观测吻合良好;同时,所得螺旋桨推力和扭矩系数也与试验值符合良好;有效地实现了梢涡捕捉及梢涡空泡模拟。同时指出,水中含气率对推力和扭矩系数的影响大于空泡形态。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号