首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   676篇
  免费   55篇
公路运输   178篇
综合类   150篇
水路运输   330篇
铁路运输   55篇
综合运输   18篇
  2024年   4篇
  2023年   3篇
  2022年   20篇
  2021年   22篇
  2020年   34篇
  2019年   26篇
  2018年   23篇
  2017年   30篇
  2016年   29篇
  2015年   27篇
  2014年   53篇
  2013年   36篇
  2012年   64篇
  2011年   62篇
  2010年   36篇
  2009年   48篇
  2008年   23篇
  2007年   45篇
  2006年   31篇
  2005年   32篇
  2004年   14篇
  2003年   16篇
  2002年   7篇
  2001年   8篇
  2000年   9篇
  1999年   5篇
  1998年   5篇
  1997年   4篇
  1996年   5篇
  1995年   3篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1987年   1篇
排序方式: 共有731条查询结果,搜索用时 15 毫秒
631.
低噪声迷宫式控制阀设计原理及数值分析   总被引:3,自引:0,他引:3  
在舰船水管路系统中,采用控制阀进行管路系统阻力匹配设计并实现低噪声配置。控制阀在水力激励下形成振动噪声并通过管路传递形成船外辐射噪声。为降低管路系统振动及船外辐射噪声,有必要进行低噪声控制阀的设计研制。该文提出了控制阀水力及声学设计方法,采用流体动力学数值方法进行了低噪声控制阀原理分析,验证了分流、多级和迷宫拐角式低噪声设计原理。基于低噪声设计原理设计了包含上层穿孔、中层多迷宫流道和下层少迷宫流道三部分重叠形成的阀套流通结构的分层迷宫式控制阀。阀内流场分析结果显示:阀套出流不均匀形成高速低压区域,易发生空化增大噪声;阀套腔体和阀套沿出流方向出口处形成大尺度漩涡结构,为主要噪声源区域。  相似文献   
632.
管路噪声是舰艇低频噪声的重要来源之一,严重影响舰艇的声隐身性能。针对舰艇中典型的离心泵组,设计蓄能器和亥姆赫兹消声器相结合的低噪声排水装置。通过AMESim软件建立仿真模型,并搭建实验平台进行验证。仿真和实验结果均表明,低噪声排水装置可以有效衰减离心泵出口管道中的压力脉动,从而降低流体噪声和管路振动。  相似文献   
633.
基于流固耦合的螺旋桨性能分析及参数优化   总被引:1,自引:0,他引:1  
为了研究某型螺旋桨水动力及强度特性.首先建立螺旋桨实体模型,再在CFX中设置计算条件,运用CFD有限元方法计算与分析不同进速下螺旋桨的推力系数、转矩系数、敞水效率以及桨叶压力分布等水动力参数特性及其变化趋势;然后通过Workbench平台应用流固耦合方法,将CFX求解得到的螺旋桨表面压力载荷加载到螺旋桨结构强度分析模型上,对螺旋桨的强度进行计算.最后通过改变纵倾角和螺距对螺旋桨结构进行优化,并将仿真结果与原桨比较,结果表明适当增大纵倾角能增大螺旋桨强度,适当降低螺距能提高螺旋桨敞水效率、提高抗空泡性能并增大螺旋桨强度.  相似文献   
634.
The problem of oblique wave(internal wave) propagation over a small deformation in a channel flow consisting of two layers was considered.The upper fluid was assumed to be bounded above by a rigid lid,which is an approximation for the free surface,and the lower one was bounded below by an impermeable bottom surface having a small deformation;the channel was unbounded in the horizontal directions.Assuming irrotational motion,the perturbation technique was employed to calculate the first-order corrections of the velocity potential in the two fluids by using Green’s integral theorem suitably with the introduction of appropriate Green’s functions.Those functions help in calculating the reflection and transmission coefficients in terms of integrals involving the shape function representing the bottom deformation.Three-dimensional linear water wave theory was utilized for formulating the relevant boundary value problem.Two special examples of bottom deformation were considered to validate the results.Consideration of a patch of sinusoidal ripples(having the same wave number) shows that the reflection coefficient is an oscillatory function of the ratio of twice the x-component of the wave number to the ripple wave number.When this ratio approaches one,the theory predicts a resonant interaction between the bed and the interface,and the reflection coefficient becomes a multiple of the number of ripples.High reflection of incident wave energy occurs if this number is large.Similar results were observed for a patch of sinusoidal ripples having different wave numbers.It was also observed that for small angles of incidence,the reflected energy is greater compared to other angles of incidence up to.These theoretical observations are supported by graphical results.  相似文献   
635.
采用遗传算法进行球鼻艏优化的流体动力计算(英文)   总被引:1,自引:0,他引:1  
Computational fluid dynamics(CFD) plays a major role in predicting the flow behavior of a ship.With the development of fast computers and robust CFD software,CFD has become an important tool for designers and engineers in the ship industry.In this paper,the hull form of a ship was optimized for total resistance using CFD as a calculation tool and a genetic algorithm as an optimization tool.CFD based optimization consists of major steps involving automatic generation of geometry based on design parameters,automatic generation of mesh,automatic analysis of fluid flow to calculate the required objective/cost function,and finally an optimization tool to evaluate the cost for optimization.In this paper,integration of a genetic algorithm program,written in MATLAB,was carried out with the geometry and meshing software GAMBIT and CFD analysis software FLUENT.Different geometries of additive bulbous bow were incorporated in the original hull based on design parameters.These design variables were optimized to achieve a minimum cost function of "total resistance".Integration of a genetic algorithm with CFD tools proves to be effective for hull form optimization.  相似文献   
636.
In this research,liquid sloshing behavior in a 2-D rectangular tank was simulated using ANSYS-FLUENT software subject to single or multiple-coupled external excitations(such as sway coupled with roll,and sway and roll coupled with heave).The volume of fluid(VOF) method was used to track the free surface of sloshing.External excitation was imposed through the motion of the tank by using the dynamic mesh technique.The study shows that if the tank is subjected to multiple coupled excitations and resonant excitation frequencies,liquid sloshing will become violent and sloshing loads,including impact on the top wall,will be intensified.  相似文献   
637.
金镠  虞志英  何青 《水运工程》2013,(1):101-108
黏性细颗粒泥沙在潮汐水流中运动的主要特性之一是存在多种不同尺度的输运形态。就长江口而言,其中1~2 m近底水流驱动下的高浓度悬沙输运应加重视。现场观测表明,近底高浓度悬沙的生成与黏性细颗粒泥沙在潮汐水流中的沉降特性有关,其输运对航道回淤的影响表现为滩槽之间的泥沙交换。初步估计横向水体高浓度悬沙输运造成12.5 m深水航道中段2 000万~3 000万m3的年回淤量是可能的。这可能是造成航道中段集中回淤的重要原因之一。  相似文献   
638.
从力学角度对欧拉—伯努利梁的简谐振动进行分析,推导出梁的横向振动方程;在考虑边界条件的情况下推导出两端固定梁的频率方程和主振型函数;建立主振型频率与相应密度的关系解析式,求解得到目标流体密度。以此为基础,文章提出了一种基于振荡管的新型流体密度测量方法(系统)。实验表明,相对于目前外业常用流体密度计,该流体密度计具有误差小于0.2%的高测量精度,且具有较好的抗恶劣环境的性能。  相似文献   
639.
爆破挤淤填石法作为地基处理的一种常用方法,广泛应用于沿海养殖围堤、围海造地、护岸以及防波堤等水工工程的淤泥质软土地基处理。在对岱山樱连门促淤围垦工程围堤地基爆破挤淤处理产生的悬浮泥沙输移扩散进行模拟的基础上,分析了爆破挤淤对周围海域的影响。研究结果表明,爆破挤淤所产生的悬浮泥沙的输移扩散受潮流的影响较大,其输移扩散的范围及方向很大程度上取决于爆破后工程区域附近潮流的水动力强度及方向。爆破挤淤后产生的悬浮泥沙浓度增量由于扩散和沉降作用迅速减小,在爆破3 h后基本降至10 mg/L以下。爆破挤淤施工中产生的悬沙对周围的水环境虽然有一定的影响但持续时间并不长,且影响范围有限。  相似文献   
640.
介绍了气垫船的性能、特点及国内外的发展概况;对比分析了2种类型气垫船(全垫升式气垫船、侧壁式气垫船)的主要性能及其主要应用范围;介绍了全垫升气垫船、侧壁式气垫船综合控制研究现状;简要介绍了全垫升气垫船水平运动控制、升沉运动控制方法;展望了全垫升气垫船的应用前景及所带来的社会效益;分析了市场对气垫船的需求及其推广的可行性.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号