首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4852篇
  免费   359篇
公路运输   1195篇
综合类   1914篇
水路运输   1222篇
铁路运输   624篇
综合运输   256篇
  2024年   21篇
  2023年   88篇
  2022年   133篇
  2021年   237篇
  2020年   264篇
  2019年   140篇
  2018年   123篇
  2017年   173篇
  2016年   173篇
  2015年   246篇
  2014年   402篇
  2013年   324篇
  2012年   408篇
  2011年   436篇
  2010年   290篇
  2009年   301篇
  2008年   266篇
  2007年   321篇
  2006年   299篇
  2005年   189篇
  2004年   91篇
  2003年   64篇
  2002年   38篇
  2001年   53篇
  2000年   22篇
  1999年   22篇
  1998年   18篇
  1997年   8篇
  1996年   12篇
  1995年   9篇
  1994年   4篇
  1993年   7篇
  1992年   9篇
  1991年   5篇
  1990年   8篇
  1989年   4篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有5211条查询结果,搜索用时 15 毫秒
71.
Traditionally, asphalt pavement maintenance mainly considers pavement performance and cost and largely ignores the environment while substantial amount of environmental burdens are released in the process. In this study, a multi-objective optimization model was developed integrating the three elements in order to optimize the asphalt pavement maintenance plans at the project level. Pavement performance element was decided as the multiplier of pavement serviceability index and traffic volume. Cost element was represented by the net present value, including components of agency cost, vehicle operation cost and salvage value. Environmental element, integrating energy consumption, global warming potential, acidification potential and respiratory effects potential, was measured by the life cycle assessment model. A hypothetic asphalt pavement maintenance case study was conducted using the developed multi-objective optimization model and harvested 103 sets of feasible combinations of maintenance plans, each of which is non-dominated by the others. Trade-offs analysis was performed among the three objectives and visualized in both two- and three-dimension forms. It is found there is an opportunity of reducing the cost and environmental impacts to 80.3% and 77.8% and increasing the pavement performance to 146.6% compared to the base case. However, they are mutually compromised and cannot be reached simultaneously. The developed model reveals the quantitatively interactive relationship of the three objectives and helps optimize the asphalt pavement maintenance plans.  相似文献   
72.
On-demand traffic fleet optimization requires operating Mobility as a Service (MaaS) companies such as Uber, Lyft to locally match the offer of available vehicles with their expected number of requests referred to as demand (as well as to take into account other constraints such as driver’s schedules and preferences). In the present article, we show that this problem can be encoded into a Constrained Integer Quadratic Program (CIQP) with block independent constraints that can then be relaxed in the form of a convex optimization program. We leverage this particular structure to yield a scalable distributed optimization algorithm corresponding to computing a gradient ascent in a dual space. This new framework does not require the drivers to share their availabilities with the operating company (as opposed to standard practice in today’s mobility as a service companies). The resulting parallel algorithm can run on a distributed smartphone based platform.  相似文献   
73.
Eco-driving is an energy efficient traffic operation measure that may lead to important energy savings in high speed railway lines. When a delay arises in real time, it is necessary to recalculate an optimal driving that must be energy efficient and computationally efficient.In addition, it is important that the algorithm includes the existing uncertainty associated with the manual execution of the driving parameters and with the possible future traffic disturbances that could lead to new delays.This paper proposes a new algorithm to be executed in real time, which models the uncertainty in manual driving by means of fuzzy numbers. It is a multi-objective optimization algorithm that includes the classical objectives in literature, running time and energy consumption, and as well a newly defined objective, the risk of delay in arrival. The risk of delay in arrival measure is based on the evolution of the time margin of the train up to destination.The proposed approach is a dynamic algorithm designed to improve the computational time. The optimal Pareto front is continuously tracked during the train travel, and a new set of driving commands is selected and presented to the driver when a delay is detected.The algorithm evaluates the 3 objectives of each solution using a detailed simulator of high speed trains to ensure that solutions are realistic, accurate and applicable by the driver. The use of this algorithm provides energy savings and, in addition, it permits railway operators to balance energy consumption and risk of delays in arrival. This way, the energy performance of the system is improved without degrading the quality of the service.  相似文献   
74.
A number of approaches have been developed to evaluate the impact of land development on transportation infrastructure. While traditional approaches are either limited to static modeling of traffic performance or lack a strong travel behavior foundation, today’s advanced computational technology makes it feasible to model an individual traveler’s response to land development. This study integrates dynamic traffic assignment (DTA) with a positive agent-based microsimulation travel behavior model for cumulative land development impact studies. The integrated model not only enhances the behavioral implementation of DTA, but also captures traffic dynamics. It provides an advanced yet practical approach to understanding the impact of a single or series of land development projects on an individual driver’s behavior, as well as the aggregated impacts on the demand pattern and time-dependent traffic conditions. A simulation-based optimization (SBO) approach is proposed for the calibration of the modeling system. The SBO calibration approach enhances the transferability of this integrated model to other study areas. Using a case study that focuses on the cumulative land development impact along a congested corridor in Maryland, various regional and local travel behavior changes are discussed to show the capability of this tool for behavior side estimations and the corresponding traffic impacts.  相似文献   
75.
It is well recognized that the left-turning movement reduces the intersection capacity significantly, because exclusive left turn phases are needed to discharge left turn vehicles only. This paper proposes the concept of Left-Hand Traffic (LHT) arterial, on where vehicles follow left-hand traffic rules as in England and India. The unconventional intersection where a LHT arterial intersects with a Right-Hand Traffic (RHT) arterial is named as symmetric intersection. It is only need three basic signal phases to separate all conflicts at symmetric intersection, while it at least need four signal phases at a conventional intersection. So, compared with the conventional intersection, the symmetric intersection can provide longer green time for the left-turning and the through movement, which can increase the capacity significantly. Through-movement waiting areas (TWAs) can be set at the symmetric intersection effectively, which can increase the capacity and short the cycle length furthermore. And the symmetric intersection is Channelized to improve the safety of TWAs. The Binary-Mixed-Integer-Linear-Programming (BMILP) model is employed to formulate the capacity maximization problem and signal cycle length minimization problem of the symmetric intersection. The BMILP model can be solved by standard branch-and-bound algorithms efficiently and outputs the lane allocation, signal timing decisions, and other decisions. Experiments analysis shows that the symmetric intersection with TWAs can increase the capacity and short the signal cycle length.  相似文献   
76.
77.
This paper presents a general formulation for optimization of horizontal road alignment, composed of tangential segments and circular curves suitably connected with transition curves (clothoids). It consists of a constrained optimization problem where the objective function is given by a line integral along the layout. The integrand is a function representing the cost of the road going through each point and, by considering different costs, a wide range of problems can be included in this formulation. To show it, we apply this methodology to three different situations. The two first cases are related with the design of a new road layout and used to solve a pair of academic examples. The third problem deals with the improvement of a road adapting the old path to current legislation, and it is solved taking as case study the reconstruction project for a regional road (NA-601) in the north of Spain.  相似文献   
78.
In this research, we present a data-splitting algorithm to optimally solve the aircraft sequencing problem (ASP) on a single runway under both segregated and mixed-mode of operation. This problem is formulated as a 0–1 mixed-integer program (MIP), taking into account several realistic constraints, including safety separation standards, wide time-windows, and constrained position shifting, with the objective of maximizing the total throughput. Varied scenarios of large scale realistic instances of this problem, which is NP-hard in general, are computationally difficult to solve with the direct use of commercial solver as well as existing state-of-the-art dynamic programming method. The design of the algorithm is based on a recently introduced data-splitting algorithm which uses the divide-and-conquer paradigm, wherein the given set of flights is divided into several disjoint subsets, each of which is optimized using 0–1 MIP while ensuring the optimality of the entire set. Computational results show that the difficult instances can be solved in real-time and the solution is efficient in comparison to the commercial solver and dynamic programming, using both sequential, as well as parallel, implementation of this pleasingly parallel algorithm.  相似文献   
79.
Building safe and effective roundabouts requires optimizing traffic (operational) efficiency (TE) and traffic safety (TS) while taking into account geometric factors, traffic characteristics and local constraints. Most existing simulation-based optimization models do not simultaneously optimize all these factors. To capture the relationship among geometry, efficiency and safety, we put forward a model formulation in this paper. We present a new multi-criteria and simultaneous multi-objective optimization (MOO) model approach to optimize geometry, TE and TS of urban unsignalized single-lane roundabouts. To the best of our knowledge, this is the first model that uses the multi-criteria decision-making method known as analytic hierarchy process to evaluate and rank traffic parameters and geometric elements of urban single-lane roundabouts. The model was built based on comprehensive review of the research literature and existing roundabout simulation software, a field survey of 61 civil and traffic expert engineers in Croatia, and field studies of roundabouts in the Croatian capital city of Zagreb. We started from the basis of Kimber’s capacity model, HCM2010 serviceability model, and Maycock and Hall's accident prediction model, which we extended by adding sensitivity analysis and powerful MOO procedures of the bounded objective function method and interactive optimization. Preliminary validation of the model was achieved by identifying the optimal and most robust of three geometric alternatives (V.1-V.3) for an unsignalized single-lane roundabout in Zagreb, Croatia. The geometric parameters in variant V.1 had significantly higher values than in the existing design V.0, while approaches 1 and 3 in variant V.2 were enlarged as much as possible within allowed spatial limits and Croatian guidelines, reflecting their higher traffic demand. Sensitivity analysis indicated that variant V.2 showed the overall highest TE and TS across the entire range of traffic flow demand and pedestrian crossing flow demand at approaches. At the same time, the number of predicted traffic accidents was similar for all three variants, although it was lowest overall for V.2. The similarity in predicted accident frequency for the three variants suggests that V.2 provides the greatest safety within the predefined constraints and parameter ranges explored in our study. These preliminary results suggest that the proposed model can optimize geometry, TE and TS of urban single-lane roundabouts.  相似文献   
80.
In the operation of urban rails, faults are inevitable, which leads to deviation between the actual timetable and the planned timetable. In nowadays, timetable rescheduling strategies rarely integrate the information of fault handling. In this paper, we develop a real-time automatic rescheduling strategy, which integrates the dynamic information of fault handling. The rescheduled timetable is obtained by a mathematical optimization model, the constraints set of which is automatically generated and adjusted as more information of fault handling is feedback. Compared with the experience-based rescheduling methods, the automatic rescheduling strategy reacts more quickly, and uses the information of fault handling more efficiently. A simulation system for testing the automatic rescheduling strategy is built, which uses the data of the Beijing Yizhuang metro line. Via testing on the simulation system, the effectiveness and efficiency of the automatic rescheduling strategy are validated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号