首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2408篇
  免费   230篇
公路运输   866篇
综合类   726篇
水路运输   485篇
铁路运输   418篇
综合运输   143篇
  2024年   11篇
  2023年   25篇
  2022年   76篇
  2021年   95篇
  2020年   116篇
  2019年   84篇
  2018年   72篇
  2017年   94篇
  2016年   86篇
  2015年   99篇
  2014年   179篇
  2013年   146篇
  2012年   201篇
  2011年   238篇
  2010年   152篇
  2009年   154篇
  2008年   153篇
  2007年   201篇
  2006年   173篇
  2005年   74篇
  2004年   61篇
  2003年   44篇
  2002年   19篇
  2001年   22篇
  2000年   9篇
  1999年   10篇
  1998年   8篇
  1997年   7篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   5篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
排序方式: 共有2638条查询结果,搜索用时 93 毫秒
41.
本文采用有限元软件ABAQUS建立了船舶撞击高桩码头群桩的空间有限元模型。通过计算评估了撞击力、桩体刚度、撞击位置和撞击角度下对群桩结构损伤位置的影响。基于人工神经网络(ANN)方法,对不同参数组合下的群桩结构损伤位置进行了预测,并对ANN方法的可行性进行了评估。  相似文献   
42.
Trip purpose is crucial to travel behavior modeling and travel demand estimation for transportation planning and investment decisions. However, the spatial-temporal complexity of human activities makes the prediction of trip purpose a challenging problem. This research, an extension of work by Ermagun et al. (2017) and Meng et al. (2017), addresses the problem of predicting both current and next trip purposes with both Google Places and social media data. First, this paper implements a new approach to match points of interest (POIs) from the Google Places API with historical Twitter data. Therefore, the popularity of each POI can be obtained. Additionally, a Bayesian neural network (BNN) is employed to model the trip dependence on each individual’s daily trip chain and infer the trip purpose. Compared with traditional models, it is found that Google Places and Twitter information can greatly improve the overall accuracy of prediction for certain activities, including “EatOut”, “Personal”, “Recreation” and “Shopping”, but not for “Education” and “Transportation”. In addition, trip duration is found to be an important factor in inferring activity/trip purposes. Further, to address the computational challenge in the BNN, an elastic net is implemented for feature selection before the classification task. Our research can lead to three types of possible applications: activity-based travel demand modeling, survey labeling assistance, and online recommendations.  相似文献   
43.
Bus fuel economy is deeply influenced by the driving cycles, which vary for different route conditions. Buses optimized for a standard driving cycle are not necessarily suitable for actual driving conditions, and, therefore, it is critical to predict the driving cycles based on the route conditions. To conveniently predict representative driving cycles of special bus routes, this paper proposed a prediction model based on bus route features, which supports bus optimization. The relations between 27 inter-station characteristics and bus fuel economy were analyzed. According to the analysis, five inter-station route characteristics were abstracted to represent the bus route features, and four inter-station driving characteristics were abstracted to represent the driving cycle features between bus stations. Inter-station driving characteristic equations were established based on the multiple linear regression, reflecting the linear relationships between the five inter-station route characteristics and the four inter-station driving characteristics. Using kinematic segment classification, a basic driving cycle database was established, including 4704 different transmission matrices. Based on the inter-station driving characteristic equations and the basic driving cycle database, the driving cycle prediction model was developed, generating drive cycles by the iterative Markov chain for the assigned bus lines. The model was finally validated by more than 2 years of acquired data. The experimental results show that the predicted driving cycle is consistent with the historical average velocity profile, and the prediction similarity is 78.69%. The proposed model can be an effective way for the driving cycle prediction of bus routes.  相似文献   
44.
Deep neural networks (DNNs) have recently demonstrated the capability to predict traffic flow with big data. While existing DNN models can provide better performance than shallow models, it is still an open issue of making full use of spatial-temporal characteristics of the traffic flow to improve their performance. In addition, our understanding of them on traffic data remains limited. This paper proposes a DNN based traffic flow prediction model (DNN-BTF) to improve the prediction accuracy. The DNN-BTF model makes full use of weekly/daily periodicity and spatial-temporal characteristics of traffic flow. Inspired by recent work in machine learning, an attention based model was introduced that automatically learns to determine the importance of past traffic flow. The convolutional neural network was also used to mine the spatial features and the recurrent neural network to mine the temporal features of traffic flow. We also showed through visualization how DNN-BTF model understands traffic flow data and presents a challenge to conventional thinking about neural networks in the transportation field that neural networks is purely a “black-box” model. Data from open-access database PeMS was used to validate the proposed DNN-BTF model on a long-term horizon prediction task. Experimental results demonstrated that our method outperforms the state-of-the-art approaches.  相似文献   
45.
FPSO (floating, production, storage and offloading) units are widely used in the offshore oil and gas industry. Generally, FPSOs have excellent oil storage capacity owing to their huge oil cargo holds. The volume and distribution of stored oil in the cargo holds influence the strain level of hull girder, especially at critical positions of FPSO. However, strain prediction using structural analysis tools is computationally expensive and time consuming. In this study, a prediction tool based on back-propagation (BP) neural network called GAIFOA-BP is proposed to predict the strain values of concerned positions of an FPSO model under different oil storage conditions. The GAIFOA-BP combines BP model and GAIFOA which is a combination of genetic algorithm (GA) and an improved fruit fly optimization algorithm (IFOA). Results from three benchmark tests show that the GAIFOA-BP model has a remarkable performance. Subsequently, a total of 81 sets of training data and 25 sets of testing data are obtained from experiment using fiber Bragg grating (FBG) sensors installed on the surface of an FPSO model. The numerical results show that the GAIFOA-BP is capable of predicting the strain values with higher accuracy as compared with other BP models. Finally, the reserved GAIFOA-BP model is utilized to predict the strain values under the inputs of a 10-day time series of volume and distribution of stored oil. The predicted strain results are further used to calculate the fatigue consumption of measurement points.  相似文献   
46.
针对现有交通流预测方法未充分考虑多断面车流演变规律,提出基于时延特性建模的时空相关性计算方法. 该方法采用对不同断面、不同时刻交通流的分布相似性度量,对输入的车辆到达数据序列进行切割构建时空相似度矩阵,得到相邻断面之间的时延参数. 基于时延特性建模,将多断面之间的流量信息进行融合,使用长短时记忆(LSTM)网络进行流量预测. 通过对实际路段数据的预测和结果分析,验证所提方法的有效性和实用性.  相似文献   
47.
TSP作为目前最先进的隧道地质超前预报探测仪器,得到了广泛的应用。但是由于在现实中存在各种问题,从而导致该仪器的预测精度受到了极大限制,主要阐述如何提高其预测精度,更好地为隧道的建设服务。  相似文献   
48.
Model-based traffic prediction systems (mbTPS) are a central component of the decision support and ICM (integrated corridor management) systems currently used in several large urban traffic management centers. These models are intended to generate real-time predictions of the system’s response to candidate operational interventions. They must therefore be kept calibrated and trustworthy. The methodologies currently available for tracking the validity of a mbTPS have been adapted from approaches originally designed for off-line operational planning models. These approaches are insensitive to the complexity of the network and to the amount and quality of the data available. They also require significant human intervention and are therefore not suitable for real-time monitoring. This paper outlines a set of criteria for designing tests that are appropriate for the mbTPS task. It also proposes a test that meets the criteria. The test compares the predictions of the mbTPS in question to those of a model-less alternative. A t-test is used to determine whether the predictions of the mbTPS are superior to those of the model-less predictor. The approach is applied to two different systems using data from the I-210 freeway in Southern California.  相似文献   
49.
The use of smartphone technology is increasingly considered a state-of-the-art practice in travel data collection. Researchers have investigated various methods to automatically predict trip characteristics based upon locational and other smartphone sensing data. Of the trip characteristics being studied, trip purpose prediction has received relatively less attention. This research develops trip purpose prediction models based upon online location-based search and discovery services (specifically, Google Places API) and a limited set of trip data that are usually available upon the completion of the trip. The models have the potential to be integrated with smartphone technology to produce real-time trip purpose prediction. We use a recent, large-scale travel behavior survey that is augmented by downloaded Google Places information on each trip destination to develop and validate the models. Two statistical and machine learning prediction approaches are used, including nested logit and random forest methods. Both sets of models show that Google Places information is a useful predictor of trip purpose in situations where activity- and person-related information is uncollectable, missing, or unreliable. Even when activity- and person-related information is available, incorporating Google Places information provides incremental improvements in trip purpose prediction.  相似文献   
50.
《运输评论》2012,32(1):5-34
ABSTRACT

This review provides a critical overview of what has been learnt about commuting’s impact on subjective wellbeing (SWB). It is structured around a conceptual model which assumes commuting can affect SWB over three time horizons: (i) during the journey; (ii) immediately after the journey; and (iii) over the longer term. Our assessment of the evidence shows that mood is lower during the commute than other daily activities and stress can be induced by congestion, crowding and unpredictability. People who walk or cycle to work are generally more satisfied with their commute than those who travel by car and especially those who use public transport. Satisfaction decreases with duration of commute, regardless of mode used, and increases when travelling with company. After the journey, evidence shows that the commute experience “spills over” into how people feel and perform at work and home. However, a consistent link between commuting and life satisfaction overall has not been established. The evidence suggests that commuters are generally successful in trading off the drawbacks of longer and more arduous commute journeys against the benefits they bring in relation to overall life satisfaction, but further research is required to understand the decision making involved. The evidence review points to six areas that warrant policy action and research: (i) enhancing the commute experience; (ii) increasing commute satisfaction; (iii) reducing the impacts of long duration commutes; (iv) meeting commuter preferences; (v) recognising flexibility and constraints in commuting routines and (vi) accounting for SWB impacts of commuting in policy making and appraisal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号