首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3684篇
  免费   377篇
公路运输   1221篇
综合类   798篇
水路运输   1319篇
铁路运输   469篇
综合运输   254篇
  2024年   34篇
  2023年   39篇
  2022年   122篇
  2021年   118篇
  2020年   185篇
  2019年   153篇
  2018年   117篇
  2017年   152篇
  2016年   142篇
  2015年   218篇
  2014年   307篇
  2013年   282篇
  2012年   362篇
  2011年   309篇
  2010年   224篇
  2009年   199篇
  2008年   219篇
  2007年   264篇
  2006年   183篇
  2005年   104篇
  2004年   67篇
  2003年   60篇
  2002年   41篇
  2001年   25篇
  2000年   30篇
  1999年   23篇
  1998年   6篇
  1997年   19篇
  1996年   9篇
  1995年   8篇
  1994年   10篇
  1993年   5篇
  1992年   3篇
  1991年   8篇
  1989年   4篇
  1988年   2篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
排序方式: 共有4061条查询结果,搜索用时 15 毫秒
81.
以大直径盾构隧道施工过程中管片上浮错台问题为背景,研究大直径盾构隧道环缝结构的抗剪特性,从结构承载力角度提出有效且可控的抗浮措施,并深入探究环间错台对隧道结构的影响,以确定大直径盾构隧道环间变形控制标准,减小隧道环间错台引起的管片损伤。以深圳妈湾跨海通道为依托,基于材料塑性损伤本构,考虑管片接缝细部构造,根据相关管片环缝剪切原型试验对接缝抗剪数值模拟方法的有效性进行验证。随后,利用数值模拟研究了环向接缝顺剪、逆剪和切向剪切时的错台现象和破坏特征,分析了斜螺栓、凹凸榫对环缝抗剪特性的影响,为大直径盾构隧道环缝结构的抗浮设计和安全评价提供依据。研究表明:环缝剪切错台数值计算结果与试验结果吻合良好,能够有效揭示接缝剪切过程中结构的变形特点和损伤特性;环缝接缝的剪切错台过程较为复杂,呈阶段性特征,螺栓和凹凸榫的受力状态是决定接缝抗剪特性的关键因素;凹凸榫能显著提高接缝抗剪刚度和承载力,但也带来接缝应力集中和张开过大等问题,设计和施工过程中需充分考虑接缝刚度和变形的适应性;基于环缝错台损伤分析,提出了环缝变形的三级安全评价指标,大直径盾构隧道接缝变形必须控制在Ⅱ级以内,以保证隧道的结构安全和正常使用性能。  相似文献   
82.
对预应力CTRC板加固预载梁的弯曲性能进行了试验和数值模拟研究。根据预载梁的卸载水平和持载水平设置了6个试验工况。试验和数值模拟结果表明,加固梁极限承载力的数值模拟结果与试验结果接近。与未加固的模拟梁相比,加固梁的极限承载力模拟值明显提高,极限承载力模拟值提高的最大比例为74.0%,但卸载水平和持载水平对加固梁的极限承载力影响较小。试验结果和数值模拟结果的对比证明了预应力CTRC板加固预载梁数值模拟的有效性和准确性。  相似文献   
83.
为分析顶推反力荷载对墙后土体位移、应力、孔隙水压力的影响,以及不同反力加载深度、土体弹性模量、加固体厚度、加固体深度对墙后土体水平位移的影响,建立顶管顶进过程中工作井反力墙稳定性的动态三维有限元分析模型,研究结果表明: 1)反力荷载仅影响对应的部分土体区域,反力加载区域附近的土体水平位移变化大; 2)地面除0 m附近出现较大沉陷外,其他位置均表现为隆起,隆起呈平行“波痕”状; 3)反力荷载只是改变墙后土体的土压力类型,没有改变土压力的分布形态; 4)顶推反力的大小对土体孔压的变化影响轻微; 5)反向顶推力合力点深度及土体弹性模量对土体侧向位移影响较大; 6)加固体深度和厚度对土体侧向位移影响轻微。  相似文献   
84.
为探究气体惰化机理,提高惰化过程效率,对卧式椭球状LNG液舱的气体惰化过程进行数值模拟与优化。采用从椭球状液舱端部直流射流、旋转射流和混合射流的进气方式,分析气体射流流场结构和惰化效果,探究不同进气方式对惰化过程影响的机理,并提炼其惰化优化方案。结果表明:在进气流量一定时,旋转射流的惰化效果优于直流射流和混合射流,这是由于旋转射流会产生更大的进气扩张角,可大幅减少惰化死角的存在,有利于在储罐内部形成推移式惰化;旋转射流相对直流射流可节省40.4%氮气量和惰化时间,相对混合射流可节省26.2%氮气量和惰化时间。旋转射流优化方案可减少氮气耗量并节省惰化时间,提高惰化过程效率,具有较高的经济性,对于实际LNG液舱的气体惰化过程具有重要指导意义。  相似文献   
85.
陈志明  伍斯杰 《船舶工程》2020,42(S1):61-66
本文基于计算流体力学(CFD)方法,对多重参考系模型(MRF)及滑移网格模型(SM)在计算螺旋桨水动力性能时的差异进行了探讨。将以上两种模型应用到4381螺旋桨的水动力性能计算中,首先将计算得到的推力系数及转矩系数与试验数据进行了对比,考察了两种计算模型对螺旋桨的敞水性能的预测情况,并进一步对两种模型计算得到的螺旋桨盘面的速度场、桨叶的压力分布、桨后涡量云图等进行了对比分析。计算结果表明,滑移网格模型相较于多重参考系模型,对螺旋桨的推力系数的模拟结果误差更小,扭矩系数方面,两种模型的模拟结果相差不大;对于进速系数较大时,两种模型模拟得到的压力分布及速度分布较为相似,但对于高负荷情况,滑移网格模型可以更好地捕捉桨叶的压力分布及桨盘面处的速度分布情况;进速系数较小时,多重参考系模型可以模拟出涡结构的发散现象,而滑移网格模型可以更好的在高进速系数情况下捕捉到梢涡结构。  相似文献   
86.
为了设计无缆潜航器,采用数值分析和机械制造相结合的方式,设计出一款新型无缆潜航器,在设计制造出潜航器的基础上,对该无缆潜航器进行力学性能分析研究,对其水下运动规律及特性进行了理论推导,采用数值分析的方法分别讨论机器人的结构力学特性和流体力学特性,并对机器人的应力应变强度参数进行仿真分析,讨论不同情况下机器人的属性参数,结合分析数据,对潜航器运行工况下的各项参数进行了稳定性分析,最后对以上所有参数进行总结归纳,文中所采用的方法可以用于机器人设计及优化。  相似文献   
87.
为了探究天然气与柴油喷孔位置对天然气发动机燃烧和排放的影响,基于L23/30天然气发动机,建立了柴油引燃天然气的发动机模型,利用CONVERGE软件对燃烧过程和排放进行模拟分析。模拟结果表明:由于天然气与柴油喷孔位置变化的影响,会导致柴油引燃天然气在空间的变化,因此对发动机的燃烧和排放造成了影响,通过对比不同喷嘴间的距离和不同喷嘴分布的设计方案得出,采用中心对称设计时获得了较好的燃烧和排放性能。  相似文献   
88.
安康  李良碧  姚智  霍发力 《船舶工程》2020,42(9):133-141
半潜式平台在拖行过程撑杆等细长结构承受的波浪砰击对结构安全影响较大,相关船级社规范中明确要求结构分析过程中需要考虑波浪砰击载荷。基于传统势流理论的数值方法已经被广泛的应用于浮式海洋平台的水动力和砰击载荷的研究,但是对于复杂的粘性干涉效应、波浪爬升、波浪破碎和波浪砰击等实际工程问题不能够运用势流理论准确模拟。非定常的计算流体力学CFD (Computational Fluid Dynamics)方法能够较为准确解决上述问题。因此,本文以982半潜式海洋平台为研究对象,采用计算流体力学中的动态重叠网格方法和流域体积域方法VOF(volume of fluid),结合水池物理模型试验结果,对平台在拖行工况下撑杆的波浪砰击进行研究。主要对半潜平台撑杆在三种不同流速和风速的拖航工况下撑杆受到的砰击压力的敏感性进行了分析研究,分析波浪砰击下撑杆的瞬态砰击压强分布情况,得到波浪砰击压力危险区域,同时给出拖航工况下撑杆砰击压力系数的变化规律,为分析预报半潜式平台撑杆在复杂的拖航海况下受到的砰击压力提供了参考。  相似文献   
89.
江磊 《城市道桥与防洪》2020,(4):189-192,I0019-I0020
随着地下空间不断开发,新建盾构隧道近距离穿越既有隧道、地下通道、地下管线等的现象越来越普遍。由于新建盾构隧道对原地应力场的改变,必然会引起既有隧道的变形,对既有隧道的结构安全产生影响。结合上海市北横通道大直径盾构隧道工程实例,采用Midas_GTS有限元分析软件建立三维数字模型,分析软土地区超大直径盾构隧道穿越施工,对已运营轨道交通盾构隧道的影响。  相似文献   
90.
孙龙  阮晓波 《水运工程》2020,(3):147-154
目前复合排水地基固结度及强度无法从理论角度进行计算和预测,给工程设计及施工带来较大不便.针对这一问题,对砂桩排水板复合排水边界条件进行合理简化,推导出复合排水理论模型;并借助有限元软件PLAXIS 3D进行分析,将PLAXIS 3D计算结果与理论结果进行对比,并给出排水体控制区域不规则修正系数a的建议值.结果表明,理论模型计算结果与数值模拟结果相吻合;在砂桩间距大于3 m时,a值建议取1. 20~1. 35,当砂桩间距小于3 m时,a值建议取1. 35~1. 50.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号