首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   946篇
  免费   60篇
公路运输   363篇
综合类   188篇
水路运输   42篇
铁路运输   137篇
综合运输   276篇
  2024年   6篇
  2023年   14篇
  2022年   63篇
  2021年   107篇
  2020年   50篇
  2019年   29篇
  2018年   62篇
  2017年   52篇
  2016年   60篇
  2015年   63篇
  2014年   59篇
  2013年   45篇
  2012年   80篇
  2011年   58篇
  2010年   26篇
  2009年   41篇
  2008年   26篇
  2007年   32篇
  2006年   27篇
  2005年   17篇
  2004年   13篇
  2003年   12篇
  2002年   7篇
  2001年   11篇
  2000年   6篇
  1999年   6篇
  1998年   4篇
  1997年   1篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1992年   3篇
  1991年   2篇
  1990年   6篇
  1989年   8篇
  1988年   1篇
排序方式: 共有1006条查询结果,搜索用时 672 毫秒
21.
The growth of vehicle sales and use internationally requires the consumption of significant quantities of energy and materials, and contributes to the deterioration of air-quality and climate conditions. Advanced propulsion systems and electric drive vehicles have substantially different characteristics and impacts. They require life cycle assessments and detailed comparisons with gasoline powered vehicles which, in turn, should lead to critical updates of traditional models and assumptions. For a comprehensive comparison of advanced and traditional light duty vehicles, a model is developed that integrates external costs, including emissions and time losses, with societal and consumer life cycle costs. Life cycle emissions and time losses are converted into costs for seven urban light duty vehicles. The results, which are based on vehicle technology characteristics and transportation impacts on environment, facilitate vehicle comparisons and support policy making in transportation. Substantially, more sustainable urban transportation can be achieved in the short-term by promoting policies that increase vehicle occupancy; in the intermediate-term by increasing the share of hybrid vehicles in the car market and in the long-term by the widespread use of electric vehicles. A sensitivity-analysis of life cost results revealed that vehicle costs change significantly for different geographical areas depending on vehicle taxation, pricing of gasoline, electric power and pollution. Current practices in carbon and air quality pricing favor oil and coal based technologies. However, increasing the cost of electricity from coal and other fossil fuels would increase the variable cost for electric vehicles, and tend to favor the variable cost of hybrid vehicles.  相似文献   
22.
During the last years, many governments have set targets for increasing the share of biofuels in the transportation sector. Understanding consumer behavior is essential in designing policies that efficiently increase the uptake of cleaner technologies. In this paper we analyze adopters and non-adopters of alternative fuel vehicles (AFVs). We use diffusion of innovation theory and the established notion that the social system and interpersonal influence play important roles in adoption. Based on a nationwide database of car owners we analyze interpersonal influence on adoption from three social domains: neighbors, family and coworkers. The results point primarily at a neighbor effect in that AFV adoption is more likely if neighbors also have adopted. The results also point at significant effects of interpersonal influence from coworkers and family members but these effects weaken or disappear when income, education level, marriage, age, gender and green party votes are controlled for. The results extend the diffusion of innovation and AFV literature with empirical support for interpersonal influence based on objective data where response bias is not a factor. Implications for further research, environmental and transport policy, and practitioners are discussed.  相似文献   
23.
Connected vehicle environment provides the groundwork of future road transportation. Researches in this area are gaining a lot of attention to improve not only traffic mobility and safety, but also vehicles’ fuel consumption and emissions. Energy optimization methods that combine traffic information are proposed, but actual testing in the field proves to be rather challenging largely due to safety and technical issues. In light of this, a Hardware-in-the-Loop-System (HiLS) testbed to evaluate the performance of connected vehicle applications is proposed. A laboratory powertrain research platform, which consists of a real engine, an engine-loading device (hydrostatic dynamometer) and a virtual powertrain model to represent a vehicle, is connected remotely to a microscopic traffic simulator (VISSIM). Vehicle dynamics and road conditions of a target vehicle in the VISSIM simulation are transmitted to the powertrain research platform through the internet, where the power demand can then be calculated. The engine then operates through an engine optimization procedure to minimize fuel consumption, while the dynamometer tracks the desired engine load based on the target vehicle information. Test results show fast data transfer at every 200 ms and good tracking of the optimized engine operating points and the desired vehicle speed. Actual fuel and emissions measurements, which otherwise could not be calculated precisely by fuel and emission maps in simulations, are achieved by the testbed. In addition, VISSIM simulation can be implemented remotely while connected to the powertrain research platform through the internet, allowing easy access to the laboratory setup.  相似文献   
24.
With 36 ventures testing autonomous vehicles (AVs) in the State of California, commercial deployment of this disruptive technology is almost around the corner (California Department of Transportation, 2016). Different business models of AVs, including Shared AVs (SAVs) and Private AVs (PAVs), will lead to significantly different changes in regional vehicle inventory and Vehicle Miles Travelled (VMT). Most prior studies have already explored the impact of SAVs on vehicle ownership and VMT generation. Limited understanding has been gained regarding vehicle ownership reduction and unoccupied VMT generation potentials in the era of PAVs. Motivated by such research gap, this study develops models to examine how much vehicle ownership reduction can be achieved once private conventional vehicles are replaced by AVs and the spatial distribution of unoccupied VMT accompanied with the vehicle reduction. The models are implemented using travel survey and synthesized trip profile from Atlanta Metropolitan Area. The results show that more than 18% of the households can reduce vehicles, while maintaining the current travel patterns. This can be translated into a 9.5% reduction in private vehicles in the study region. Meanwhile, 29.8 unoccupied VMT will be induced per day per reduced vehicles. A majority of the unoccupied VMT will be loaded on interstate highways and expressways and the largest percentage inflation in VMT will occur on minor local roads. The results can provide implications for evolving trends in household vehicles uses and the location of dedicated AV lanes in the PAV dominated future.  相似文献   
25.
When vehicles share their status information with other vehicles or the infrastructure, driving actions can be planned better, hazards can be identified sooner, and safer responses to hazards are possible. The Safety Pilot Model Deployment (SPMD) is underway in Ann Arbor, Michigan; the purpose is to demonstrate connected technologies in a real-world environment. The core data transmitted through Vehicle-to-Vehicle and Vehicle-to-Infrastructure (or V2V and V2I) applications are called Basic Safety Messages (BSMs), which are transmitted typically at a frequency of 10 Hz. BSMs describe a vehicle’s position (latitude, longitude, and elevation) and motion (heading, speed, and acceleration). This study proposes a data analytic methodology to extract critical information from raw BSM data available from SPMD. A total of 968,522 records of basic safety messages, gathered from 155 trips made by 49 vehicles, was analyzed. The information extracted from BSM data captured extreme driving events such as hard accelerations and braking. This information can be provided to drivers, giving them instantaneous feedback about dangers in surrounding roadway environments; it can also provide control assistance. While extracting critical information from BSMs, this study offers a fundamental understanding of instantaneous driving decisions. Longitudinal and lateral accelerations included in BSMs were specifically investigated. Varying distributions of instantaneous longitudinal and lateral accelerations are quantified. Based on the distributions, the study created a framework for generating alerts/warnings, and control assistance from extreme events, transmittable through V2V and V2I applications. Models were estimated to untangle the correlates of extreme events. The implications of the findings and applications to connected vehicles are discussed in this paper.  相似文献   
26.
通过九屏幕分析法、因果分析法和功能分析法梳理了轨道车辆车下线缆波纹管穿线的技术难点,提出新的波纹管自动穿线方案。通过方案成本核算、效率分析和工人体力负荷改善性分析对新的波纹管自动穿线方案进行评价。改进后的波纹管穿线方案能有效地提高工作效率,降低操作员的工作强度。  相似文献   
27.
在充分分析典型四相位交叉口行人二次过街设置前、后的行人流与右转车流冲突的前提下,以行人过街时间占有率和行人群到达分布作为分析指标,利用可插车间隙理论得出行人单向通行和双向通行条件下的右转车通行能力计算公式;根据行人流随机消散和集中消散的不同特征,应用随机分布理论推导出右转车穿越行人流的延误模型;并通过算例对比分析行人二次过街设置前、后右转车通行能力和延误的变化值。结果表明,除了在少数行人流量比较大的情况下, 行人二次过街的设置会小幅度减少右转车的延误;在其他大多数情况下,行人二次过街设置后, 右转车的通行能力将受到限制,延误增大,其中,平均通行能力降低了16.68%,平均延误时间增大 了21%,所以,当右转车交通需求较大时,需同时考虑行人和右转车的交通运行状态,优化设计是否采用行人二次过街,避免右转车超出极限忍耐时间而增大与行人冲突的概率。  相似文献   
28.
While the phenomenon of excess vehicle emissions from cold-start conditions is well known, the magnitude and duration of this phenomenon is often unclear due to the complex chemical processes involved and uncertainty in the literature on this subject. This paper synthesizes key findings regarding the influence of ambient and engine temperatures on light-duty vehicle (LDV) emissions. Existing literature, as well as analytical tools like the U.S. Environmental Protection Agency’s Motor Vehicle Emission Simulator (MOVES), indicate that while total vehicle emissions have dropped significantly in recent years, those associated with cold starts can still constitute up to 80% for some pollutant species. Starting emissions are consistently found to make up a high proportion of total transportation-related methane (CH4), nitrous oxide (N2O), and volatile organic compounds (VOCs). After 3–4 min of vehicle operation, both the engine coolant and the catalytic converter have generally warmed, and emissions are significantly lower. This effect lasts roughly 45 min after the engine is shut off, though the cooling rate depends greatly on the emission species and ambient temperature. Electrically (pre-)heated catalysts, using the bigger batteries available on hybrid drivetrains and plug-in vehicles, may be the most cost-effective technology to bring down a sizable share of mobile source emissions. Trip chaining (to keep engines warm) and shifting to non-motorized modes for shorter trips, where the cold start can dominate emissions, are also valuable tactics.  相似文献   
29.
为了解决传统匝道控制车流汇入时车辆需要减速至停止,从而造成延误时间过长的问题,提出了一种智能网联车环境下的高速匝道汇入车辆轨迹优化的两阶段优化模型,其中,第1 阶段优化车辆进入匝道口的时序;第2 阶段基于第1 阶段的最优时序,优化车辆轨迹. 根据所构建的模型设计了一种启发式算法优化车辆通过匝道冲突区域的时序,然后结合 GPOPS工具优化车辆的轨迹.为了验证所提出方法的有效性,将所提出的方法应用到20 min 随机到达的车流,进行仿真实验.实验结果表明,与先进先出的方法相比,本文所提出的方法能够使总延误减少59.7%,总油耗减少10.5%,说明该方法能够实现车辆以较高的速度通过匝道冲突区域,有效地减少了车辆汇入延误,同时也节约了油耗.  相似文献   
30.
This paper presents the results of a preference survey of 1545 respondents’ willingness to purchase electric vehicles (EVs) in Philadelphia. We pay particular attention to respondents’ willingness to pay for convenient charging systems and parking spaces. If the value of dedicated parking substantially outweighs the value of convenient charging systems, residential-based on-street charging systems are unlikely to ever be politically palatable. As expected, respondents are generally willing to pay for longer range, shorter charging times, lower operating costs, and shorter parking search times. For a typical respondent, a $100 per month parking charge decreases the odds of purchasing an EV by around 65%. Across mixed logit and latent class models, we find substantial variation in the willingness to pay for EV range, charge time, and ease of parking. Of note, we find two primary classes of respondents with substantially different EV preferences. The first class tends to live in multifamily housing units in central parts of the city and puts a high value on parking search time and the availability of on-street charging stations. The second class, whose members are likelier to be married, wealthy, conservative, and residing in single-family homes in more distant neighborhoods, are willing to pay more for EV range and charge time, but less for parking than the first group. They are also much likelier to consider purchasing EVs at all. We recommend that future research into EV adoption incorporate neighborhood-level features, like parking availability and average trip distances, which vary by neighborhood and almost certainly influence EV adoption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号