排序方式: 共有67条查询结果,搜索用时 15 毫秒
41.
42.
Shared autonomous vehicles (SAVs) are the next major evolution in urban mobility. This technology has attracted much interest of car manufacturers aiming at playing a role as transportation network companies (TNCs) and carsharing agencies in order to gain benefits per kilometer and per ride. It is predicted that the majority of future SAVs would most probably be electric. It is therefore important to understand how limited vehicle range and the configuration of charging infrastructure will affect the performance of shared autonomous electric vehicle (SAEV) services. In this study, we aim to explore the impacts of charging station placement, charging types (including normal and rapid charging, and battery swapping), and vehicle battery capacities on service efficiency. We perform an agent-based simulation of SAEVs across the Rouen Normandie metropolitan area in France. The simulation process features impact assessment by considering dynamic demand responsive to the network and traffic.Research results suggest that the performance of SAEVs is strongly correlated with the charging infrastructure. Importantly, faster charging infrastructure and placement of charging locations according to minimized distances between demand hubs and charging stations result in a higher performance. Further analysis indicates the importance of dispersing charging stations across the service area and its impacts on service effectiveness. The results also underline that SAEV battery capacity has to be selected carefully such that to avoid the overlaps between demand and charging peak times. Finally, the simulation results show that the performance indicators of SAEV service are significantly improved by providing battery swapping infrastructure. 相似文献
43.
The transition to electric vehicles (EV) faces two major barriers. On one hand, EV batteries are still expensive and limited by range, owing to the lack of technology breakthrough. On the other hand, the underdeveloped supporting infrastructure, particularly the lack of fast refueling facilities, makes EVs unsuitable for medium and long distance travel. The primary purpose of this study is to better understand these hurdles and to develop strategies to overcome them. To this end, a conceptual optimization model is proposed to analyze travel by EVs along a long corridor. The objective of the model is to select the battery size and charging capacity (in terms of both the charging power at each station and the number of stations needed along the corridor) to meet a given level of service in such a way that the total social cost is minimized. Two extensions of the base model are also considered. The first relaxes the assumption that the charging power at the stations is a continuous variable. The second variant considers battery swapping as an alternative to charging. Our analysis suggests that (1) the current paradigm of charging facility development that focuses on level 2 charging delivers poor level of service for long distance travel; (2) the level 3 charging method is necessary not only to achieve a reasonable level of service, but also to minimize the social cost; (3) investing on battery technology to reduce battery cost is likely to have larger impacts on reducing the charging cost; and (4) battery swapping promises high level of service, but it may not be socially optimal for a modest level of service, especially when the costs of constructing swapping and charging stations are close. 相似文献
44.
The promotion of Electric Vehicles (EVs) has become a key measure of the governments in their attempt to reduce greenhouse gas emissions. However, range anxiety is a big barrier for drivers to choose EVs over traditional vehicles. Installing more charging stations in appropriate locations can relieve EV drivers’ range anxiety. To determine the locations of public charging stations, we propose two optimization models for two different charging modes - fast and slow charging, which aim at minimizing the total cost while satisfying certain coverage goal. Instead of using discrete points, we use geometric objects to represent charging demands. Importantly, to resolve the partial coverage problem (PCP) for networks, we extend the polygon overlay method to split the demands on the road network. After applying the models to Greater Toronto and Hamilton Area (GTHA) and to Downtown Toronto, we show that the proposed models are practical and effective in determining the locations of charging stations. Moreover, they can eliminate PCP and provide much more accurate results than the complementary partial coverage method (CP). 相似文献
45.
We propose an optimization model based on vehicle travel patterns to capture public charging demand and select the locations of public charging stations to maximize the amount of vehicle-miles-traveled (VMT) being electrified. The formulated model is applied to Beijing, China as a case study using vehicle trajectory data of 11,880 taxis over a period of three weeks. The mathematical problem is formulated in GAMS modeling environment and Cplex optimizer is used to find the optimal solutions. Formulating mathematical model properly, input data transformation, and Cplex option adjustment are considered for accommodating large-scale data. We show that, compared to the 40 existing public charging stations, the 40 optimal ones selected by the model can increase electrified fleet VMT by 59% and 88% for slow and fast charging, respectively. Charging demand for the taxi fleet concentrates in the inner city. When the total number of charging stations increase, the locations of the optimal stations expand outward from the inner city. While more charging stations increase the electrified fleet VMT, the marginal gain diminishes quickly regardless of charging speed. 相似文献
46.
This paper studies the heterogeneous energy cost and charging demand impact of autonomous electric vehicle (EV) fleet under different ambient temperature. A data-driven method is introduced to formulate a two-dimensional grid stochastic energy consumption model for electric vehicles. The energy consumption model aids in analyzing EV energy cost and describing uncertainties under variable average vehicle trip speed and ambient temperature conditions. An integrated eco-routing and optimal charging decision making framework is designed to improve the capability of autonomous EV’s trip level energy management in a shared fleet. The decision making process helps to find minimum energy cost routes with consideration of charging strategies and travel time requirements. By taking advantage of derived models and technologies, comprehensive case studies are performed on a data-driven simulated transportation network in New York City. Detailed results show us the heterogeneous energy impact and charging demand under different ambient temperature. By giving the same travel demand and charging station information, under the low and high ambient temperature within each month, there exist more than 20% difference of overall energy cost and 60% difference of charging demand. All studies will help to construct sustainable infrastructure for autonomous EV fleet trip level energy management in real world applications. 相似文献
47.
When substituting conventional with electric vehicles (EV) a high annual mileage is desirable from an environmental as well as an economic perspective. However, there are still significant technological limitations that need to be taken into consideration. This study presents and discusses five different charging strategies for two mobility applications executed during an early stage long-term field test from 2013 to 2015 in Germany, which main objective was to increase the utilization within the existing technological restrictions. During the field test seven EV drove more than 450,000 km. For four out of five presented charging strategies the inclusion of DC fast charging is indispensable. Based on the empirical evidence five key performance indicators (KPI) are developed. These indicators give recommendations to economically deploy EV in commercial fleets. The results demonstrate that the more predictable the underlying mobility demand and the more technical information is available the better the charging strategies can be defined. Furthermore, the results indicate that a prudent mix of conventional and DC fast charging allows a high annual mileage while at the same time limiting avoidable harmful effects on the battery. 相似文献
48.
As charging-while-driving (CWD) technology advances, charging lanes can be deployed in the near future to charge electric vehicles (EVs) while in motion. Since charging lanes will be costly to deploy, this paper investigates the deployment of two types of charging facilities, namely charging lanes and charging stations, along a long traffic corridor to explore the competitiveness of charging lanes. Given the charging infrastructure supply, i.e., the number of charging stations, the number of chargers installed at each station, the length of charging lanes, and the charging prices at charging stations and lanes, we analyze the charging-facility-choice equilibrium of EVs. We then discuss the optimal deployment of charging infrastructure considering either the public or private provision. In the former, a government agency builds and operates both charging lanes and stations to minimize social cost, while in the latter, charging lanes and stations are assumed to be built and operated by two competing private companies to maximize their own profits. Numerical experiments based on currently available empirical data suggest that charging lanes are competitive in both cases for attracting drivers and generating revenue. 相似文献
49.
This work uses market analysis and simulation to explore the potential impact of workplace and similarly convenient away-from-home charging infrastructure (CAFHCI) in reducing US light duty vehicle (LDV) petroleum use and greenhouse gas emissions. The ParaChoice model simulates the evolution of LDV sales, fuel use, and emissions through 2050, considering consumer responses to different options of electric range extension made available through CAFHCI, fraction of the population with access, and delay in infrastructure implementation. Results indicate that providing a greater fraction of the population access to CAFHCI at level 1 charging rates for a full workday (∼16–20 miles of range extension) may lead to more petroleum use reduction than providing level 2 charging to a lesser fraction. This result holds even considering the fraction of the population without at-home charging. 2050 battery electric vehicle sales increase 40% (85%) if the entire population is guaranteed daily access to one full workday of level 1 CAFHCI (half a workday of level 2, ∼80 miles of range extension). Plug-in hybrid sales increase when CAFHCI enables range extension below 20–40 miles/day, most significantly in households without at-home charging capability. Faster CAFHCI may decrease plug-in hybrid sales as less expensive BEVs become attractive to a greater fraction of the market. 相似文献
50.
A multi-period multipath refueling location model is developed to expand public electric vehicle (EV) charging network to dynamically satisfy origin–destination (O–D) trips with the growth of EV market. The model captures the dynamics in the topological structure of network and determines the cost-effective station rollout scheme on both spatial and temporal dimensions. The multi-period location problem is formulated as a mixed integer linear program and solved by a heuristic based on genetic algorithm. The model and heuristic are justified using the benchmark Sioux Falls road network and implemented in a case study of South Carolina. The results indicate that the charging station rollout scheme is subject to a number of major factors, including geographic distributions of cities, vehicle range, and deviation choice, and is sensitive to the types of charging station sites. 相似文献