首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21276篇
  免费   970篇
公路运输   6913篇
综合类   8084篇
水路运输   2894篇
铁路运输   3334篇
综合运输   1021篇
  2024年   80篇
  2023年   136篇
  2022年   439篇
  2021年   665篇
  2020年   646篇
  2019年   419篇
  2018年   415篇
  2017年   447篇
  2016年   476篇
  2015年   725篇
  2014年   1487篇
  2013年   1175篇
  2012年   1788篇
  2011年   1937篇
  2010年   1617篇
  2009年   1497篇
  2008年   1476篇
  2007年   1772篇
  2006年   1616篇
  2005年   1020篇
  2004年   627篇
  2003年   451篇
  2002年   292篇
  2001年   329篇
  2000年   161篇
  1999年   106篇
  1998年   86篇
  1997年   71篇
  1996年   57篇
  1995年   34篇
  1994年   40篇
  1993年   49篇
  1992年   24篇
  1991年   19篇
  1990年   24篇
  1989年   26篇
  1988年   14篇
  1985年   1篇
  1984年   2篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
331.
The limited understanding of vehicular emissions in China, especially evaporative emissions, is one obstacle to establishing tighter standards. To evaluate tailpipe and evaporative emissions, two typical China IV vehicles and one Tier 2 vehicle with an onboard refuelling vapour recovery (ORVR) system were selected and tested. One of the China IV vehicles was fuelled with gasoline, E10 and M15, respectively, to investigate the effect of fuel properties on vehicular emissions. For each vehicle, cold-start tailpipe emission tests were conducted first, followed by an evaporation test. Based on the emission factors and real-world vehicle activity data, the annual tailpipe and evaporative hydrocarbon (HC) emissions of each vehicle were calculated and compared. The results show that E10 and M15 significantly reduced the tailpipe CO and particle number (PN) emissions but seriously aggravated the NOx emissions, especially for M15. The hot soak losses (HSLs) and diurnal breathing losses (DBLs) were slightly impacted by the fuel properties. The annual evaporative emissions with E10 and M15 were higher than that with gasoline. The ORVR system effectively controlled the evaporative emissions, especially for DBLs. Evaporative emissions from the China IV vehicles were 1.1–1.4 times the tailpipe HC emissions. Additionally, the evaporative emission factors of the China IV vehicles were almost 50% lower than the standard (2.0 g/test), whereas their annual evaporative emissions were almost 1.8–2.8 times higher than those from the Tier 2 vehicle. Therefore, controlling evaporative emissions currently remains a great need in China, and the ORVR might be a recommended evaporative control technology.  相似文献   
332.
With trajectory data, a complete microscopic and macroscopic picture of traffic flow operations can be obtained. However, trajectory data are difficult to observe over large spatiotemporal regions—particularly in urban contexts—due to practical, technical and financial constraints. The next best thing is to estimate plausible trajectories from whatever data are available. This paper presents a generic data assimilation framework to reconstruct such plausible trajectories on signalized urban arterials using microscopic traffic flow models and data from loops (individual vehicle passages and thus vehicle counts); traffic control data; and (sparse) travel time measurements from whatever source available. The key problem we address is that loops suffer from miss- and over-counts, which result in unbounded errors in vehicle accumulations, rendering trajectory reconstruction highly problematic. Our framework solves this problem in two ways. First, we correct the systematic error in vehicle accumulation by fusing the counts with sparsely available travel times. Second, the proposed framework uses particle filtering and an innovative hierarchical resampling scheme, which effectively integrates over the remaining error distribution, resulting in plausible trajectories. The proposed data assimilation framework is tested and validated using simulated data. Experiments and an extensive sensitivity analysis show that the proposed method is robust to errors both in the model and in the measurements, and provides good estimations for vehicle accumulation and vehicle trajectories with moderate sensor quality. The framework does not impose restrictions on the type of microscopic models used and can be naturally extended to include and estimate additional trajectory attributes such as destination and path, given data are available for assimilation.  相似文献   
333.
通过加装控制盒的方式,实现单探头测深仪与自动控制探头之间的流畅切换,将传统单探头测深仪改造成具有多探头功能的高效水下测量仪器系统,主要用于航道和码头基床等的水下扫测。利用该系统进行的码头基床扫测已经取得成功,可为同类测量设备的改造提供全新的思路。  相似文献   
334.
In this paper, we report on the construction of a new framework for simulating mixed traffic consisting of cars, trams, and pedestrians that can be used to support discussions about road management, signal control, and public transit. Specifically, a layered road structure that was designed for car traffic simulations was extended to interact with an existing one-dimensional (1D) car-following model and a two-dimensional (2D) discrete choice model for pedestrians. The car model, pedestrian model, and interaction rules implemented in the proposed framework were verified through simulations involving simple road environments. The resulting simulated values were in near agreement with the empirical data. We then used the proposed framework to assess the impact of a tramway extension plan for a real city. The simulation results showed that the impact of the proposed tramway on existing car traffic would not be serious, and by extension, implied that the proposed framework could help stakeholders decide on expansion scenarios that are satisfactory to both tram users and private car owners.  相似文献   
335.
This work addresses the formation phase of automatic platooning. The objective is to optimally control the throttle of vehicles, with a given arbitrary initial condition, such that desired ground speed and inter-vehicular spacings are reached. The steering of the vehicles is also controlled, because the vehicles should track a desired path while forming the platoon. In order to address the platoon formation problem, a cooperative strategy is formed by constructing a discrete state space model which represents the dynamics of a set of n vehicles. Once this model is set, a control method known as Interpolating Control, which aims at regulating to the origin an uncertain and/or time-varying linear discrete-time system with state and control constraints, is utilized. The performance of this control method is evaluated and compared with other approaches such as Model Predictive Control (MPC).Simulations are conducted which suggest that the Interpolating Control approach can be seen as an alternative to optimization-based control schemes such as Model Predictive Control, especially for problems for which finding the optimal solution requires calculations, where the Interpolating Control approach can provide a straightforward sub-optimal solution.In the experimental part of this work, the control algorithms for the platoon formation and path tracking problems are combined, and tested in a laboratory environment, using three mobile robots equipped with wireless routers. Validation of the proposed models and control algorithms is achieved by successful experiments.  相似文献   
336.
公共交通乘务调度问题是一个将车辆工作切分为一组合法班次的过程,它是NP难问题,许多求解方法的效率都与班次评价密不可分,本文通过裁剪TOPSIS方法(Technique for Order Preference by Similarity to an Ideal Solution)设计了TOPSIS班次评价方法.此外,通过裁剪变邻域搜索算法使之适合求解乘务调度问题,提出了基于变邻域搜索的乘务调度方法(Crew Scheduling Approach Based on Variable Neighbourhood Search,VNS),其中,并入了TOPSIS班次评价方法在调度过程中进行班次评价,设计了两种带概率的复合邻域结构以增加搜索的多样性,帮助跳出局部最优,在VNS中利用模拟退火算法进行局部搜索.利用中国公共交通中的11组实例进行了测试,测试结果表明,VNS优于两种新近提出的乘务调度方法,且其结果关于班次数接近于下界.  相似文献   
337.
338.
The present paper describes how to use coordination between neighbouring intersections in order to improve the performance of urban traffic controllers. Both the local MPC (LMPC) introduced in the companion paper (Hao et al., 2018) and the coordinated MPC (CMPC) introduced in this paper use the urban cell transmission model (UCTM) (Hao et al., 2018) in order to predict the average delay of vehicles in the upstream links of each intersection, for different scenarios of switching times of the traffic lights at that intersection. The feedback controller selects the next switching times of the traffic light corresponding to the shortest predicted average delay. While the local MPC (Hao et al., 2018) only uses local measurements of traffic in the links connected to the intersection in comparing the performance of different scenarios, the CMPC approach improves the accuracy of the performance predictions by allowing a control agent to exchange information about planned switching times with control agents at all neighbouring intersections. Compared to local MPC the offline information on average flow rates from neighbouring intersections is replaced in coordinated MPC by additional online information on when the neighbouring intersections plan to send vehicles to the intersection under control. To achieve good coordination planned switching times should not change too often, hence a cost for changing planned schedules from one decision time to the next decision time is added to the cost function. In order to improve the stability properties of CMPC a prediction of the sum of squared queue sizes is used whenever some downstream queues of an intersection become too long. Only scenarios that decrease this sum of squares of local queues are considered for possible implementation. This stabilization criterion is shown experimentally to further improve the performance of our controller. In particular it leads to a significant reduction of the queues that build up at the edges of the traffic region under control. We compare via simulation the average delay of vehicles travelling on a simple 4 by 4 Manhattan grid, for traffic lights with pre-timed control, traffic lights using the local MPC controller (Hao et al., 2018), and coordinated MPC (with and without the stabilizing condition). These simulations show that the proposed CMPC achieves a significant reduction in delay for different traffic conditions in comparison to these other strategies.  相似文献   
339.
This paper presents the design and results for field tests regarding the environmental benefits in stop-and-go traffic of an algorithmic green driving strategy based on inter-vehicle communication (IVC), which was proposed in Yang and Jin (2014). The green driving strategy dynamically calculates advisory speed limits for vehicles equipped with IVC devices so as to smooth their speed profiles and reduce their emissions and fuel consumption. For the field tests, we develop a smartphone-based IVC system, in which vehicles’ speeds and locations are collected by GPS and accelerometer sensors embedded in smartphones, and communications among vehicles are enabled by specially designed smartphone applications, a central server, and 4G cellular networks. Six field tests are carried out on an uninterrupted ring road under slow or fast stop-and-go traffic conditions. We compare the performances of three alternatives: no green driving, heuristic green driving, and the IVC-based algorithmic green driving. Results show that heuristic green driving has better smoothing and environmental effects than no green driving, but the IVC-based algorithmic green driving outperforms both. In the future, we are interested in field tests under more realistic traffic conditions.  相似文献   
340.
In this paper, an efficient trajectory planning system is proposed to solve the integration of arrivals and departures on parallel runways with a novel route network system. Our first effort is made in designing an advanced Point Merge (PM) route network named Multi-Level Point Merge (ML-PM) to meet the requirements of parallel runway operations. Then, more efforts are paid on finding a complete and efficient framework capable of dynamically modelling the integration of arrival and departure trajectories on parallel runways, modelling the conflict detection and resolution in presence of curved trajectory and radius-to-fix merging process. After that, a suitable mathematical optimization formulation is built up. Receding Horizon Control (RHC) and Simulated Annealing (SA) algorithms are proposed to search the near-optimal solution for the large scale trajectories in routine dense operations. Taking Beijing Capital International Airport (BCIA) as a study case, the experimental results show that our system shows good performances on the management of arrivals and departures. It can automatically solve all the potential conflicts in presence of dense traffic flows. With its unique ML-PM route network, it can realize a shorter flying time and a near-Continuous Descent Approach (CDA) descent for arrival aircraft, an economical climbing for departure aircraft, an easier runway allocation together with trajectory control solutions. It shows a good and dynamic sequencing efficiency in Terminal Manoeuvring Area (TMA). In mixed ML-PM mode, under tested conditions, our proposed system can increase throughput at BCIA around 26%, compared with baseline. The methodology defined here could be easily applied to airports worldwide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号