排序方式: 共有129条查询结果,搜索用时 15 毫秒
11.
12.
13.
14.
隧道底部溶洞顶板安全厚度预测模型 总被引:2,自引:0,他引:2
以某公路岩溶隧道为背景,采用二维弹塑性有限元方法对隧道开挖进行数值模拟计算,分析隧道底部溶洞顶板安全厚度的影响因素,研究各影响因素与安全厚度的相关变化规律,并用多元回归和支持向量机方法建立能综合体现各影响因素的溶洞顶板安全厚度预测模型,从而为岩溶隧道设计施工提供一定的科学依据和指导。 相似文献
15.
采用改进分块方式的塔式方向梯度直方图(PHOG,Pyramid Histogram of oriented gradient)作为特征提取的方法,应用支持向量机(SVM,Support Vector Machine)算法作为分类器进行训练和检测.INRIA测试集上的测试结果表明,相对于采用传统HOG和PHOG特征表示方法,所提出的方法使分类检测正确率有了进一步提高. 相似文献
16.
根据兰州市安宁区8所中小学校门口调查数据,建立基于支持向量机的中小学校门口交通安全评价模型,利用MATLAB编程,计算8所中小学相对安全情况。结果表明:在数据样本较小的情况下,应用SVM 模型可以较好评价中小学校门口安全等级;在数据充足、影响因素指标赋值规范的情况下,评价效果进一步提高。可以为中小学校门口道路及其附属设施建设提供参考,有效地减少城市儿童道路交通伤害。 相似文献
17.
18.
JIANG Feng FENG Qi 《船舶与海洋工程学报》2007,6(4):48-54
Predicting damage to vibration isolators in a raft experiencing heavy shock loadings from explosions is an important task when designing a raft system. It is also vital to be able to research the vulnerability of heavily shocked floating rafts unreliable, especially when the allowable values The conventional approach to prediction has been or ultimate values of vibration isolators of supposedly uniform standard in a raft actually have differing and uncertain values due to defective workmanship. A new model for predicting damage to vibration isolators in a shocked floating raft system is presented in this paper. It is based on a support vector machine(SVM), which uses Artificial Intelligence to characterize complicated nonlinear mapping between the impacting environment and damage to the vibration isolators. The effectiveness of the new method for predicting damage was illustrated by numerical simulations, and shown to be effective when relevant parameters of the model were chosen reasonably. The effect determining parameters, including kernel function and penalty factors, has on prediction results is also discussed. It can be concluded that the SVM will probably become a valid tool to study damage or vulnerability in a shocked raft system. 相似文献
19.
20.