排序方式: 共有129条查询结果,搜索用时 0 毫秒
121.
通过故障诊断可以对水面无人艇可能要发生的故障进行预报、分析和判断,从而及时调整控制策略以抑制故障的继续发展,为消除故障、维修设备提供准确的技术支持.SVM是基于统计学习理论的一种机器学习方法,常用于故障诊断,在解决小样本、高维度、非线性模式识别问题中有独特优势.SVM分类的准确率由其属性参数直接决定,而最佳的属性参数往往很难直接得到.基于粒子群优化SVM(PSO-SVM)的水面无人艇故障诊断方法,即将粒子群优化算法(PSO)用于SVM属性参数的优化选择中,充分发挥了PSO算法的全局搜索能力和易于实现的优势.水面无人艇故障诊断实例分析结果表明,PSO-SVM的故障诊断精度高于BP-NNs、GS-SVM、GA-SVM。PSO-SVM适用于水面无人艇故障诊断. 相似文献
122.
为促进海洋资源开发,提高海洋开发能力,本文对水下目标分类识别方法进行研究。首先,对水下目标分类方法进行概述,介绍较为常用的方法。然后,提出K-means与SVM结合的水下目标分类方法。该方法利用S变换进行图像预处理,提取不同分辨率下的不同特征作为分类的特征向量,通过K-means与SVM结合的分类识别方法进行分类。实验结果表明,该方法具有较高的识别率。 相似文献
123.
鉴于某双层圆柱壳体的机械振动噪声数据结构复杂、维数较高,工程上不宜直接分析,文章提出先对其进行特征提取后再进一步分析的思路,可有效简化数据结构,提高数据分析的准确度。选择工程上常用的主成分分析法(PCA)、核主成分分析法(KPCA)与独立成分分析法(ICA)对文中高维机械振动噪声数据进行特征提取。利用支持向量机(SVM)的分类识别能力,对经特征提取后不同工况下的噪声数据进行分类识别。依据正确识别率大小比较三种方法的特征提取效果,以选择针对某双层圆柱壳体机械振动噪声数据合适的特征提取方法。结论可为深入分析某双层圆柱壳体机械振动噪声数据的规律特点打下良好基础。 相似文献
124.
文章介绍了支持向量机的原理和算法,分析了层次分析法及其在故障诊断中的应用,并在上述理论下,建立了柴油机的故障模型。仿真结果表明,SVM能够在小样本的情况下解决柴油机故障诊断的分类问题,在实际的机械故障诊断的分类中具有广泛的应用前景. 相似文献
125.
随着网络的发展,越来越多的广播电视信息由模拟转为数字,传媒信息安全问题迫在眉睫,是亟待解决的问题.本文采用文本分类技术,设计了一种新的文本分类模型,并应用该传媒信息安全系统,从而减少系统的误报率和漏报率,实验结果表明,该算法具有较高的分类精度和效率. 相似文献
126.
提出使用最小二乘支持向量机LS—SVM(Least Squares Support Vector Machines)算法进行乐器音乐分类,从而实现乐器的辩识。在对Ls—sVM理论进行深入探讨的基础上,选择乐器音乐clip作为样本,进行特征提取,提取的特征包括频谱特征,短时自相关系数和MFCC等,然后用最小二乘支持向量机算法进行分类。对古琴、古筝、箜篌和琵琶音乐采取样本进行仿真实验,求得分类准确率和运行时间,同时使用逻辑回归(Logistic Regression)算法进行对比试验,其中最小二乘支持向量机和逻辑回归分类的准确率分别为96.5%和92.5%,且LS—SVM的运行时间比Logist的少。实验结果表明最小二乘支持向量机具有更为优越的分类性能和非线性处理能力,可以推广用于解决其它实际分类问题。 相似文献
127.
阐述了SVM算法在液压系统的故障诊断领域中的应用及其诊断效果.以全液压克令吊模型为研究对象,将克令吊模型的回转回路作为一个独立系统,使用功率键合图方法建立其数学模型,并用Matlab中的Simulink对模型进行计算机仿真,对回转回路选择不同的参数进行流量的特性仿真,运用支持向量机理论依据流量值的特性对回转回路进行故障分类,得到了令人满意的故障分类正确率. 相似文献
128.
129.
针对目前合成孔径雷达(Synthetic Aperture Radar,SAR)监测溢油存在的问题,在分类时考虑像元灰度的空间分布和结构特征;同时考虑分类时样本不足的缺陷,采用结合纹理的支持向量机(Support Vector Machine,SVM)遥感图像分类方法,进行溢油目标的识别。以发生在西班牙的"威望号"溢油事件为例,利用目标样本对以灰度共生矩阵法提取各种纹理特征进行了分析,指出均值、对比度、方差、熵和相异性能够较好地识别溢油目标。采用最小距离、最大似然和SVM分类器分别对溢油目标进行提取,结果表明SVM具有较好的分类精度。 相似文献