首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2370篇
  免费   53篇
公路运输   734篇
综合类   340篇
水路运输   102篇
铁路运输   679篇
综合运输   568篇
  2024年   1篇
  2023年   4篇
  2022年   25篇
  2021年   67篇
  2020年   99篇
  2019年   48篇
  2018年   91篇
  2017年   111篇
  2016年   122篇
  2015年   165篇
  2014年   193篇
  2013年   160篇
  2012年   196篇
  2011年   147篇
  2010年   82篇
  2009年   106篇
  2008年   115篇
  2007年   168篇
  2006年   143篇
  2005年   101篇
  2004年   89篇
  2003年   48篇
  2002年   27篇
  2001年   21篇
  2000年   22篇
  1999年   15篇
  1998年   13篇
  1997年   12篇
  1996年   10篇
  1995年   9篇
  1994年   9篇
  1993年   2篇
  1992年   2篇
排序方式: 共有2423条查询结果,搜索用时 31 毫秒
91.
The present paper examines a Vehicle Routing Problem (VRP) of major practical importance which is referred to as the Load-Dependent VRP (LDVRP). LDVRP is applicable for transportation activities where the weight of the transported cargo accounts for a significant part of the vehicle gross weight. Contrary to the basic VRP which calls for the minimization of the distance travelled, the LDVRP objective is aimed at minimizing the total product of the distance travelled and the gross weight carried along this distance. Thus, it is capable of producing sensible routing plans which take into account the variation of the cargo weight along the vehicle trips. The LDVRP objective is closely related to the total energy requirements of the vehicle fleet, making it a credible alternative when the environmental aspects of transportation activities are examined and optimized. A novel LDVRP extension which considers simultaneous pick-up and delivery service is introduced, formulated and solved for the first time. To deal with large-scale instances of the examined problems, we propose a local-search algorithm. Towards an efficient implementation, the local-search algorithm employs a computational scheme which calculates the complex weighted-distance objective changes in constant time. Solution results are presented for both problems on a variety of well-known test cases demonstrating the effectiveness of the proposed solution approach. The structure of the obtained LDVRP and VRP solutions is compared in pursuit of interesting conclusions on the relative suitability of the two routing models, when the decision maker must deal with the weighted distance objective. In addition, results of a branch-and-cut procedure for small-scale instances of the LDVRP with simultaneous pick-ups and deliveries are reported. Finally, extensive computational experiments have been performed to explore the managerial implications of three key problem characteristics, namely the deviation of customer demands, the cargo to tare weight ratio, as well as the size of the available vehicle fleet.  相似文献   
92.
The High Line is an elevated public park in New York City, transformed from an unused freight rail line. Pedestrians walking through Manhattan’s West Side can walk either on the High Line or on a footpath below. Using Manhattan as a laboratory, this paper offers a combined assessment of noise and particulate matter pollution for its pedestrians. Noise and PM2.5 levels were recorded simultaneously for two cases (i) pedestrians walking on a footpath alongside road traffic and (ii) pedestrians walking on the elevated High Line. Testing took places over three days in autumn 2014. Results were analysed to investigate if pedestrians using the High Line would have a lower pollution exposure to those using the footpath below. Results showed statistically significant differences between the upper and lower levels in exposure to both pollution types. In order to quantify the overall impact, results are expressed through a combined air–noise pollution index. This index indicates that the average reduction in PM2.5 and noise pollution along the High Line compared to the footpath below is approximately 37%.  相似文献   
93.
Traffic metering offers great potential to reduce congestion and enhance network performance in oversaturated urban street networks. This paper presents an optimization program for dynamic traffic metering in urban street networks based on the Cell Transmission Model (CTM). We have formulated the problem as a Mixed-Integer Linear Program (MILP) capable of metering traffic at network gates with given signal timing parameters at signalized intersections. Due to the complexities of the MILP model, we have developed a novel and efficient solution approach that solves the problem by converting the MILP to a linear program and several CTM simulation runs. The solution algorithm is applied to two case studies under different conditions. The proposed solution technique finds solutions that have a maximum gap of 1% of the true optimal solution and guarantee the maximum throughput by keeping some vehicles at network gates and only allowing enough vehicles to enter the network to prevent gridlocks. This is confirmed by comparing the case studies with and without traffic metering. The results in an adapted real-world case study network show that traffic metering can increase network throughput by 4.9–38.9% and enhance network performance.  相似文献   
94.
In this paper, we address the optimization problem of allocation of Electric Vehicle (EV) public fast charging stations over an urban grid network. The objective is to minimize Greenhouse Gas Emissions (GHG) under multiple constraints including a limited agency budget, accessibility of charging stations in every possible charging request and charging demands during peak hours. Additionally, we address bi-criteria problems to consider user costs as the second objective. A convex parsimonious model that depends on relatively few assumptions and input parameters is proposed and it is shown to be useful for obtaining conceptual insights for high-level planning. In a parametric study using a hypothetical urban network model generated based on realistic parameters, we show that GHG emissions decrease with agency budget, and that the reductions vary depending on multiple factors related to EV market and EV technologies. The optimal solutions found from the bi-criteria problems are shown to be close to the solution minimizing GHG emissions only, meaning that the emission minimizing policy can also minimize user costs.  相似文献   
95.
随着《铁路基本建设项目投资管理办法》(铁总计统〔2017〕179号)及《关于铁路建设项目清理概算工作的通知》(发改投资电〔2019〕1号)文的出台,标志着铁路建设项目概算清理工作,将逐步交由建设单位按照不突破初步设计批复金额进行处理,因此初步设计阶段如何确保招标预算金额的准确性,体现的越来越为重要,本文通过对500米长轨营业线火车市场运费与编制办法计算运费的分析,量化两者费用存在的差异,列明差异原因,并提出相关建议。  相似文献   
96.
装配式综合管廊在地铁车辆基地中的应用尚处于探索阶段,为了将装配式综合管廊与地铁车辆基地有效结合,提出一种适合于地铁车辆基地的装配式综合管廊解决方案。系统研究车辆基地发展装配式管廊的可行性,从目前车辆基地综合管廊建设和运营现状出发,提出了单仓和双仓两种管廊断面模式。通过应用BIM技术对管线进行碰撞检查和节点深化设计,并在管廊设计中考虑相关附属配套设施。工程实践证明,装配式综合管廊比现浇管廊土建成本减少4%,工期缩短45%,从安全、环保、质量、工期、场地、运维等多方面具有明显优势,应大力推广。下阶段应从标准化设计、施工方面对装配式管廊进行系统研究并争取尽快应用到实际项目中。  相似文献   
97.
98.
Building safe and effective roundabouts requires optimizing traffic (operational) efficiency (TE) and traffic safety (TS) while taking into account geometric factors, traffic characteristics and local constraints. Most existing simulation-based optimization models do not simultaneously optimize all these factors. To capture the relationship among geometry, efficiency and safety, we put forward a model formulation in this paper. We present a new multi-criteria and simultaneous multi-objective optimization (MOO) model approach to optimize geometry, TE and TS of urban unsignalized single-lane roundabouts. To the best of our knowledge, this is the first model that uses the multi-criteria decision-making method known as analytic hierarchy process to evaluate and rank traffic parameters and geometric elements of urban single-lane roundabouts. The model was built based on comprehensive review of the research literature and existing roundabout simulation software, a field survey of 61 civil and traffic expert engineers in Croatia, and field studies of roundabouts in the Croatian capital city of Zagreb. We started from the basis of Kimber’s capacity model, HCM2010 serviceability model, and Maycock and Hall's accident prediction model, which we extended by adding sensitivity analysis and powerful MOO procedures of the bounded objective function method and interactive optimization. Preliminary validation of the model was achieved by identifying the optimal and most robust of three geometric alternatives (V.1-V.3) for an unsignalized single-lane roundabout in Zagreb, Croatia. The geometric parameters in variant V.1 had significantly higher values than in the existing design V.0, while approaches 1 and 3 in variant V.2 were enlarged as much as possible within allowed spatial limits and Croatian guidelines, reflecting their higher traffic demand. Sensitivity analysis indicated that variant V.2 showed the overall highest TE and TS across the entire range of traffic flow demand and pedestrian crossing flow demand at approaches. At the same time, the number of predicted traffic accidents was similar for all three variants, although it was lowest overall for V.2. The similarity in predicted accident frequency for the three variants suggests that V.2 provides the greatest safety within the predefined constraints and parameter ranges explored in our study. These preliminary results suggest that the proposed model can optimize geometry, TE and TS of urban single-lane roundabouts.  相似文献   
99.
This study describes an adaptable planning tool that examines potential change in vehicle miles travelled (VMT) growth and corresponding traffic safety outcomes in two urbanized areas, Baton Rouge and New Orleans, based on built environment, economic and demographic variables. This model is employed to demonstrate one aspect of the potential benefits of growth management policy implementation aimed at curbing VMT growth, and to establish targets with which to measure the effectiveness of those policies through a forecasting approach. The primary objective of this research is to demonstrate the need to break with current trends in order to achieve future goals, and to identify specific policy targets for fuel prices, population density, and transit service within the two study regions. Models indicate based on medium growth scenarios, Baton Rouge will experience a 9 percent increase in VMTs and New Orleans will experience 10 percent growth. This translates to corresponding increases in crashes, injuries and fatalities. The paper provides forecasts for planners and engineers to consider an alternative future, based on desired goals to reduce VMTs and therefore improve safety outcomes. A constrained-forecast model shows a cap on VMTs and crash rates is achievable through policy that increases fuel prices, population density and annual transit passenger miles per capita at reasonable levels through a growth management approach.  相似文献   
100.
The vehicle–track coupled system has a random nature in the time–space domain. This paper proposes a computational model to analyse the temporal–spatial stochastic vibrations of vehicle–track systems, where the vehicle–track system is divided into a vehicle subsystem, track subsystem, and interfacial subsystem between the wheel and rail. In this model, the time-varying randomicity of dynamical parameters of the vehicle system, correlation, and randomness of the track structural parameters in the time–space joint dimensions, and randomness of the track random irregularities are considered. A probability dimension-reduction method was used to randomly combine different random variables. Furthermore, the probability density evolution method was applied to solve the delivery problem of probabilities between excitation inputs and response outputs. The temporal–spatial stochastic vibrations of the vehicle–track system with different coefficients of variation were studied, in which we assumed that the dynamic parameters obeyed the normal distribution, and the stochastic simulation method of the track random irregularities is probed into. The calculated results from this model are consistent with the actual measured results and physical conceptions. Thus, the temporal–spatial stochastic evolutionary mechanism can be explored, and the limits of dynamic indices can be formulated by using this developed model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号