首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1655篇
  免费   60篇
公路运输   570篇
综合类   383篇
水路运输   338篇
铁路运输   366篇
综合运输   58篇
  2024年   5篇
  2023年   5篇
  2022年   31篇
  2021年   42篇
  2020年   54篇
  2019年   44篇
  2018年   55篇
  2017年   66篇
  2016年   73篇
  2015年   65篇
  2014年   86篇
  2013年   57篇
  2012年   261篇
  2011年   112篇
  2010年   68篇
  2009年   69篇
  2008年   78篇
  2007年   139篇
  2006年   91篇
  2005年   74篇
  2004年   67篇
  2003年   42篇
  2002年   24篇
  2001年   19篇
  2000年   15篇
  1999年   11篇
  1998年   9篇
  1997年   6篇
  1996年   3篇
  1995年   6篇
  1994年   5篇
  1993年   7篇
  1992年   2篇
  1991年   12篇
  1990年   4篇
  1989年   6篇
  1988年   1篇
  1984年   1篇
排序方式: 共有1715条查询结果,搜索用时 31 毫秒
911.
Wheel shimmy and wobble are well-known dynamic phenomena at automobiles, aeroplanes and motorcycles. In particular, wobble at the motorcycle is an (unstable) eigenmode with oscillations of the wheel about the steering axis, and it is no surprise that unstable bicycle wobble is perceived unpleasant or may be dangerous, if not controlled by the rider in time. Basic research on wobble at motorcycles within the last decades has revealed a better understanding of the sudden onset of wobble, and the complex relations between parameters affecting wobble have been identified. These fundamental findings have been transferred to bicycles. As mass distribution and inertial properties, rider influence and lateral compliances of tyre and frame differ at bicycle and motorcycle, models to represent wobble at motorcycles have to prove themselves, when applied to bicycles. For that purpose numerical results are compared with measurements from test runs, and parametric influences on the stability of the wobble mode at bicycles have been evolved. All numerical analysis and measurements are based on a specific test bicycle equipped with steering angle sensor, wheel-speed sensor, global positioning system (GPS) 3-axis accelerometer, and 3-axis angular velocity gyroscopic sensor.  相似文献   
912.
In this paper, we propose a new yaw moment control based on fuzzy logic to improve vehicle handling and stability. The advantages of fuzzy methods are their simplicity and their good performance in controlling non-linear systems. The developed controller generates the suitable yaw moment which is obtained from the difference of the brake forces between the front wheels so that the vehicle follows the target values of the yaw rate and the sideslip angle. The simulation results show the effectiveness of the proposed control method when the vehicle is subjected to different cornering steering manoeuvres such as change line and J-turn under different driving conditions (dry road and snow-covered).  相似文献   
913.
Vehicle steering dynamics show resonances, which depend on the longitudinal speed, unstable equilibrium points and limited stability regions depending on the constant steering wheel angle, longitudinal speed and car parameters.

The main contribution of this paper is to show that a combined decentralized proportional active front steering control and proportional-integral active rear steering control from the yaw rate tracking error can assign the eigenvalues of the linearised single track steering dynamics, without lateral speed measurements, using a standard single track car model with nonlinear tire characteristics and a non-linear first-order reference model for the yaw rate dynamics driven by the driver steering wheel input. By choosing a suitable nonlinear reference model it is shown that the responses to driver step inputs tend to zero (or reduced) lateral speed for any value of longitudinal speed: in this case the resulting controlled vehicle static gain from driver input to yaw rate differs from the uncontrolled one at higher speed. The closed loop system shows the advantages of both active front and rear steering control: higher controllability, enlarged bandwidth for the yaw rate dynamics, suppressed resonances, new stable cornering manoeuvres, enlarged stability regions, reduced lateral speed and improved manoeuvrability; in addition comfort is improved since the phase lag between lateral acceleration and yaw rate is reduced.

For the designed control law a robustness analysis is presented with respect to system failures, driver step inputs and critical car parameters such as mass, moment of inertia and front and rear cornering stiffness coefficients. Several simulations are carried out on a higher order experimentally validated nonlinear dynamical model to confirm the analysis and to explore the robustness with respect to unmodelled dynamics.  相似文献   
914.
This paper presents a framework to investigate the dynamics of overall vehicle–track systems with emphasis on theoretical modelling, numerical simulation and experimental validation. A three-dimensional vehicle–track coupled dynamics model is developed in which a typical railway passenger vehicle is modelled as a 35-degree-of-freedom multi-body system. A traditional ballasted track is modelled as two parallel continuous beams supported by a discrete-elastic foundation of three layers with sleepers and ballasts included. The non-ballasted slab track is modelled as two parallel continuous beams supported by a series of elastic rectangle plates on a viscoelastic foundation. The vehicle subsystem and the track subsystem are coupled through a wheel–rail spatial coupling model that considers rail vibrations in vertical, lateral and torsional directions. Random track irregularities expressed by track spectra are considered as system excitations by means of a time–frequency transformation technique. A fast explicit integration method is applied to solve the large nonlinear equations of motion of the system in the time domain. A computer program named TTISIM is developed to predict the vertical and lateral dynamic responses of the vehicle–track coupled system. The theoretical model is validated by full-scale field experiments, including the speed-up test on the Beijing–Qinhuangdao line and the high-speed running test on the Qinhuangdao–Shenyang line. Differences in the dynamic responses analysed by the vehicle–track coupled dynamics and by the classical vehicle dynamics are ascertained in the case of vehicles passing through curved tracks.  相似文献   
915.
Electro-hydraulic dampers can provide variable damping force that is modulated by varying the command current; furthermore, they offer advantages such as lower power, rapid response, lower cost, and simple hardware. However, accurate characterisation of non-linear fv properties in pre-yield and force saturation in post-yield is still required. Meanwhile, traditional linear or quarter vehicle models contain various non-linearities. The development of a multi-body dynamics model is very complex, and therefore, SIMPACK was used with suitable improvements for model development and numerical simulations. A semi-active suspension was built based on a belief–desire–intention (BDI)-agent model framework. Vehicle handling dynamics were analysed, and a co-simulation analysis was conducted in SIMPACK and MATLAB to evaluate the BDI-agent controller. The design effectively improved ride comfort, handling stability, and driving safety. A rapid control prototype was built based on dSPACE to conduct a real vehicle test. The test and simulation results were consistent, which verified the simulation.  相似文献   
916.
This article formulates a new direction in vehicle dynamics, described as coupled and interactive vehicle system dynamics. Formalised procedures and analysis of case studies are presented.

An analytical consideration, which explains the physics of coupled system dynamics and its consequences for dynamics of a vehicle, is given for several sets of systems including: (i) driveline and suspension of a 6×6 truck, (ii) a brake mechanism and a limited slip differential of a drive axle and (iii) a 4×4 vehicle steering system and driveline system.

The article introduces a formal procedure to turn coupled system dynamics into interactive dynamics of systems. A new research direction in interactive dynamics of an active steering and a hybrid-electric power transmitting unit is presented and analysed to control power distribution between the drive axles of a 4×4 vehicle. A control strategy integrates energy efficiency and lateral dynamics by decoupling dynamics of the two systems thus forming their interactive dynamics.  相似文献   
917.
This study aims to effectively and robustly suppress the low-frequency vibrations of floating slab tracks (FSTs) using dynamic vibration absorbers (DVAs). First, the optimal locations where the DVAs are attached are determined by modal analysis with a finite element model of the FST. Further, by identifying the equivalent mass of the concerned modes, the optimal stiffness and damping coefficient of each DVA are obtained to minimise the resonant vibration amplitudes based on fixed-point theory. Finally, a three-dimensional coupled dynamic model of a metro vehicle and the FST with the DVAs is developed based on the nonlinear Hertzian contact theory and the modified Kalker linear creep theory. The track irregularities are included and generated by means of a time–frequency transformation technique. The effect of the DVAs on the vibration absorption of the FST subjected to the vehicle dynamic loads is evaluated with the help of the insertion loss in one-third octave frequency bands. The sensitivities of the mass ratio of DVAs and the damping ratio of steel-springs under the floating slab are discussed as well, which provided engineers with the DVA's adjustable room for vibration mitigation. The numerical results show that the proposed DVAs could effectively suppress low-frequency vibrations of the FST when tuned correctly and attached properly. The insertion loss due to the attachment of DVAs increases as the mass ratio increases, whereas it decreases with the increase in the damping ratio of steel-springs.  相似文献   
918.
ABSTRACT

In this paper, a coordinated control strategy is proposed to provide an effective improvement in handling stability of the vehicle, safety, and comfortable ride for passengers. This control strategy is based on the coordination among active steering, differential braking, and active suspension systems. Two families of controllers are used for this purpose, which are the high order sliding mode and the backstepping controllers. The control strategy was tested on a full nonlinear vehicle model in the environment of MATLAB/Simulink. Rollover avoidance and yaw stability control constraints have been considered. The control system mainly focuses on yaw stability control. When rollover risk is detected, the proposed strategy controls the roll dynamics to decrease rollover propensity. Simulation results for two different critical driving scenarios, the first one is a double lane change and the other one is a J-turn manoeuvre, show the effectiveness of the coordination strategy in stabilising the vehicle, enhancing handling and reducing rollover propensity.  相似文献   
919.
内燃机曲轴轴颈的过渡圆角处是应力高度集中部位,是疲劳裂纹的最先形成位置,因此曲轴圆角是曲轴设计时需要重点关注的部位。文章采用NASTRAN软件对某发动机缸体进行模态缩减,利用EXCITE-PU软件进行动力学分析,再通过N-soft软件进行圆角的疲劳安全系数分析。结果表明,通过增加圆角半径的方式可以解决曲轴的断裂问题。  相似文献   
920.
自锚式悬索桥独特的锚固形式使其主梁承受主缆传递的巨大轴向压力,为了研究主梁刚度在初内力及活载作用下的弱化问题对自锚式悬索桥结构静动力响应的影响,首先,结合自锚式悬索桥的非线性特点引入初应力刚度矩阵,考虑随机车流过桥时几何非线性的时变性,采用分离迭代法建立非线性随机车流-自锚式悬索桥耦合振动分析系统,并编制相应的非线性分析模块。其次,以某三跨混凝土自锚式悬索桥为例,选取集中力匀速过桥工况,利用ANSYS软件对非线性分析模块的可靠性进行验证。最后,分别设置2种极端工况:第1种是单车工况,近似认为只有恒载作用下产生的几何非线性;第2种是密集交通流工况,认为是恒载和最不利活载共同作用产生的几何非线性,并采用元胞自动机模型对密集车流进行模拟,研究自锚式悬索桥恒载和活载初内力引起的几何非线性对桥梁响应的影响程度。研究结果表明:单车工况下,梁塔恒载初内力对自锚式悬索桥的车辆过桥结构响应影响显著,主梁和主塔初内力贡献程度明显不同,主梁初内力对结构刚度矩阵变化的影响贡献较大而主塔贡献微小;相对于恒载,密集车流作用下初内力效应引起的几何非线性对自锚式悬索桥结构刚度影响微小,对结构响应的非线性影响也不明显。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号