首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   464篇
  免费   32篇
公路运输   131篇
综合类   130篇
水路运输   109篇
铁路运输   121篇
综合运输   5篇
  2024年   5篇
  2023年   5篇
  2022年   5篇
  2021年   18篇
  2020年   14篇
  2019年   21篇
  2018年   9篇
  2017年   6篇
  2016年   17篇
  2015年   23篇
  2014年   37篇
  2013年   27篇
  2012年   55篇
  2011年   37篇
  2010年   28篇
  2009年   23篇
  2008年   29篇
  2007年   39篇
  2006年   28篇
  2005年   17篇
  2004年   8篇
  2003年   14篇
  2002年   4篇
  2001年   4篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有496条查询结果,搜索用时 31 毫秒
31.
In this first part of a two-part article, a previously described and validated finite-element model of a racing-car tyre is developed further to yield detailed information on carcass deflections and contact pressure and shear stress distributions for a steady rolling, slipping, and cambered tyre. Variations in running conditions simulated include loads of 1500, 3000 and 4500 N, camber angles of 0° and ?3°, and longitudinal slips from 0% to?20%. Special attention is paid to heavy braking, in which context the aligning moment is of great interest. Results generated are in broad agreement with limited experimental results from the literature and they provide considerable insight into how the tyre deforms and how the contact stresses are distributed as functions of the running conditions. Generally, each rib of the tyre behaves differently from the others, especially when the wheel is cambered. The results form a basis for the development of a simpler physical tyre model, the purpose of which is to retain accuracy over the full operating range while demanding much less computational resource. The physical tyre model is the topic of the second part of the article.  相似文献   
32.
A range of tangential forces is generated within the contact patch when a wheelset moves on the rail. These forces are intensified when incorporating curved tracks and motored axle rail vehicles [Arrus, P., de Pater, A.D. and Meyers, P., 2002, The stationary motion of a one-axle vehicle along a circular curve with real rail and wheel profiles. Vehicle System Dynamics, 37(1), 29–58]. The wheelset is subject to flange contact if an unbalanced force remains in a curve towards the high rail gauge face. The resultant force in the transverse direction includes the lateral force, the radial force, and the creep forces in addition to the effect of the frequent wheelset displacement due to the kinematic oscillation [Iwnicki, S., 2003, Simulation of wheel–rail contact forces. Fatigue Fracture Engineering Material Structure, 26, 887–900]. This article has focused on a potential variation in some of the forces cited when the wheelset is subject to backward and forward movements. A severe wear rate observed within the wheel flange region in Iranian Railways was investigated by operating a test bogie on a curvaceous track. An obvious improvement in the wear rate and wear pattern of the wheels was attained when the second test bogie encountered a bogie direction reversal procedure. This enhancement is considered in this article from the force analysis standpoint.  相似文献   
33.
地铁车站结构截面控制内力计算分析   总被引:3,自引:0,他引:3  
目前,在地铁车站结构设计中,一般采用将荷载满布到结构模型进行内力分析,并未考虑不同活载布置对结构内力的影响,从而导致部分截面设计存在安全隐患。文章以成都地铁3号线一期工程红牌楼南站结构模型为例,运用MIDASGEN有限元分析软件对不同活载布置下结构的内力进行比较,得出地铁车站各截面控制内力所对应的活载布置,为地铁车站结构设计提供借鉴。  相似文献   
34.
Dynamic train–track interaction is more complex in railway turnouts (switches and crossings) than that in ordinary tangent or curved tracks. Multiple contacts between wheel and rail are common, and severe impact loads with broad frequency contents are induced, when nominal wheel–rail contact conditions are disturbed because of the continuous variation in rail profiles and the discontinuities in the crossing panel. The absence of transition curves at the entry and exit of the turnout, and the cant deficiency, leads to large wheel–rail contact forces and passenger discomfort when the train is switching into the turnout track. Two alternative multibody system (MBS) models of dynamic interaction between train and a standard turnout design are developed. The first model is derived using a commercial MBS software. The second model is based on a multibody dynamics formulation, which may account for the structural flexibility of train and track components (based on finite element models and coordinate reduction methods). The variation in rail profile is accounted for by sampling the cross-section of each rail at several positions along the turnout. Contact between the back of the wheel flange and the check rail, when the wheelset is steered through the crossing, is considered. Good agreement in results from the two models is observed when the track model is taken as rigid.  相似文献   
35.
路堤上运行的高速列车在侧风下的流场结构及气动性能   总被引:4,自引:0,他引:4  
强侧风产生的气动力时高速列车的运行安全性有显著的影响。基于三维、定常、不可压N-S方程以及k-ε双方程湍流模型,采用有限体积法,对侧风作用下路堤上运行的高速列车进行数值模拟计算,所模拟的列车时速达350 km。通过分析侧风条件下列车周围的流场结构,得到了风速、车速与气动力之间的变化关系。研究结果表明,尽管所计算的列车外表几何形状简单,但其流场仍然非常复杂,列车背风侧将产生数个漩涡,漩涡的位置随车速、风速发生变化。车辆气动力随风速、车速的增加而逐渐增大。头车所受倾覆力矩最大,且其增长率也最大。  相似文献   
36.
The paper proposes a mathematical model of train–turnout interaction in the mid-frequency range (0–500 Hz). The model accounts for the effects of rail profile variation along the track and of local variation of track flexibility. The proposed approach is able to represent the condition of one wheel being simultaneously in contact with more than one rail, allowing the accurate prediction of the effect of wheels being transferred from one rail to another when passing over the switch toe and the crossing nose. Comprehensive results of train–turnout interaction during the negotiation of the main and the branch lines are presented, including the effect of wear of wheel/rail profiles and presence of track misalignment. In the final part of the paper, comparisons are performed between the results of numerical simulations and line measurements performed on two different turnouts for urban railway lines, showing a good agreement between experimental and numerical results.  相似文献   
37.
The moving particle semi-implicit (MPS) method was applied to compute nonlinear motions of a floating body influenced by the water on deck. To compute the motions of a rigid body, the fluid pressure at the position of each particle on the body surface was directly integrated in space and the equations of translational and rotational motions were integrated in time to determine the correct position of the rigid-body surface at each time step of the time-domain calculation. The performance of this method was validated through a comparison with measured results in an experiment that was newly conducted using a model of a box-shaped floating body with a small freeboard. Although the overall agreement was good, some discrepancies were observed for a shorter wave period, especially for the drift motion in sway. The effect of numerical resolution on the results was checked by changing the number of particles. With a higher number of particles, no obvious improvement was seen in the global body motions, but the resolution of the local free-surface profile, including the water on deck, was improved.  相似文献   
38.
Nonlinear suspension controllers have the potential to achieve superior performance compared to their linear counterparts. A nonlinear controller can focus on maximizing passenger comfort when the suspension deflection is small compared to its structural limit. As the deflection limit is approached, the controller can shift focus to prevent the suspension deflection from exceeding this limit. This results in superior ride quality over the range of road surfaces, as well as reduced wear of suspension components. This paper presents a novel approach to the design of such nonlinear controllers, based on linear parameter-varying control techniques. Parameter-dependent weighting functions are used to design active suspensions that stiffen as the suspension limits are reached. The controllers use only suspension deflection as a feedback signal. The proposed framework easily extends to the more general case where all the three main performance metrics, i.e., passenger comfort, suspension travel and road holding are considered, and to the design of road adaptive suspensions.  相似文献   
39.
针对目前依据单根斜拉索索力值变化评估斜拉桥运营健康状态的不足,提出一种基于群索索力域映射斜拉桥性能状况的方法。该方法基于蒙特卡罗法模拟获得斜拉桥群索索力域,在实测索力与群索索力域间做相异度最小寻值,根据桥梁结构不同的极限状态定义评估阈值。以国内某已建24年的大跨径预应力混凝土斜拉桥为工程实例,基于近6年(2013~2018年)实测索力数据,依照提出的新评估方法与传统评估方法对主梁结构性能状态进行评估。结果表明:传统评估方法仅得出2013年单根索力变化幅值超限的结论;新评估方法得出2013年、2018年主梁跨中截面存在消压风险,需要持续跟踪关注。该方法可定量、直观地分析评估群索索力变化对桥梁结构受力状况的影响,为桥梁的科学管养决策提供依据。  相似文献   
40.
Excitation force spectra are necessary for a realistic prediction of railway-induced ground vibration. The excitation forces cause the ground vibration and they are themselves a result of irregularities passed by the train. The methods of the related analyses – the wavenumber integration for the wave propagation in homogeneous or layered soils, the combined finite-element boundary-element method for the vehicle–track–soil interaction – have already been presented and are the base for the advanced topic of this contribution. This contribution determines excitation force spectra of railway traffic by two completely different methods. The forward analysis starts with vehicle, track and soil irregularities, which are taken from literature and axle-box measurements, calculates the vehicle–track interaction and gets theoretical force spectra as the result. The second method is a backward analysis from the measured ground vibration of railway traffic. A calculated or measured transfer function of the soil is used to determine the excitation force spectrum of the train. A number of measurements of different soils and different trains with different speeds are analysed in that way. Forward and backward analysis yield the same approximate force spectra with values around 1 kN for each axle and third of octave.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号