首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1493篇
  免费   88篇
公路运输   498篇
综合类   420篇
水路运输   392篇
铁路运输   256篇
综合运输   15篇
  2024年   3篇
  2023年   14篇
  2022年   32篇
  2021年   70篇
  2020年   70篇
  2019年   39篇
  2018年   40篇
  2017年   46篇
  2016年   43篇
  2015年   56篇
  2014年   117篇
  2013年   62篇
  2012年   131篇
  2011年   123篇
  2010年   97篇
  2009年   93篇
  2008年   95篇
  2007年   115篇
  2006年   115篇
  2005年   42篇
  2004年   38篇
  2003年   25篇
  2002年   20篇
  2001年   15篇
  2000年   10篇
  1999年   11篇
  1998年   5篇
  1997年   5篇
  1996年   7篇
  1995年   4篇
  1994年   8篇
  1993年   5篇
  1992年   10篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   7篇
排序方式: 共有1581条查询结果,搜索用时 0 毫秒
61.
道路疲劳试验的内容之一,就是用车辆在被测路基上进行反复多次的碾压,并将碾压的次数,作为综合分析被测路基的一个重要参数.道路疲劳试验常见的计数方法,多采用人工计数或用机械传动控制点动开关的电子计数.本文在分析了上述两种计数方式存在的弊病后,提出了一种原理先进、性能优越的非接触式计数器,经实践证明,效果良好.  相似文献   
62.
基于谱载荷的高速列车转向架的疲劳强度   总被引:3,自引:0,他引:3  
为了有效地预测高速列车转向架构架的疲劳强度或寿命,提出了一种基于试验谱载荷的疲劳强度预测方法.这种方法是用雨流计数法对UIC515-4和UIC615-4规定的构架疲劳强度试验载荷和载荷循环次数进行分级,用有限元法确定构架在每级载荷作用下的应力分布,将多轴应力转化为单轴应力,根据Palmgren-Miner线性累积损伤准则计算构架的等效应力,利用S-N疲劳曲线预测构架的疲劳强度或寿命.算例表明,采用该预测方法计算的高速列车转向架构架的疲劳强度与现有文献的结果一致.  相似文献   
63.
虽然泡沫沥青混合料的强度不如热拌沥青混合料,但作为基层材料在满足路面结构组合设计的条件下。对于小于极限荷载下的抗疲劳性能方面泡沫沥青混合料优势较为明显。  相似文献   
64.
焊接钢构件的概率疲劳寿命曲线和概率裂纹扩展速率曲线是进行钢结构疲劳可靠性设计和服役期间剩余疲劳寿命可靠性评估所必须的。为了获得一些构件的概率曲线,对美国NCHRP研究机构所进行的大规模焊接钢梁疲劳试验结果进行再分析。通过原始数据的统计检验,得出了常见构件的全寿命概率分布。根据Paris公式及已有的结论,对原始数据进行推演再分析,获得了Paris公式中参数的概率分布。最后,给出了概率断裂力学方法预测焊接钢梁在给定可靠度下疲劳裂纹扩展寿命的算例。  相似文献   
65.
焊接构架闸瓦托吊座与制动杠杆支座强度分析   总被引:1,自引:0,他引:1  
通过对焊接构架闸瓦托吊座和制动杠杆支座进行受力分析,确定了两者载荷工况,并对其进行了有限元分析,确定出闸瓦托吊座和制动杠杆支座上的应力分布.在此基础上,进行了静强度和疲劳强度校核.研究结果表明,焊接构架闸瓦托吊座和制动杠杆支座静强度满足TB/T 1335-1966的规定,疲劳强度满足AAR-M213-8V的要求.  相似文献   
66.
山区双车道公路驾驶员疲劳特性研究   总被引:1,自引:0,他引:1  
山区双车道公路由于地形条件限制线形复杂多变,山体及路侧植被遮挡视线的现象时有发生,增加了驾驶操作的难度和强度.导致驾驶操作频繁、精神紧张.长时间高强度、大负荷的驾驶操作极易产生驾驶疲劳,进而发生交通事故.因此,研究山区双车道公路驾驶员的驾驶疲劳特性,可为山区公路的交通安全设计和管理提供参考,预防交通事故,保证人车安全.  相似文献   
67.
动载作用下柔性车体结构疲劳寿命的仿真   总被引:1,自引:1,他引:1  
为准确预测随机动载作用下柔性车体结构的疲劳寿命,将多体动力学仿真和有限元分析相结合,建立了车体多体动力学模型.计算了35个关键部位的载荷历程,并用准静态应力分析法获得了对应的应力影响因子.用模态分析技术获得了车体结构固有频率和模态振型,用子结构技术获得了车体有限元缩减模型.根据危险应力分布、应力时间历程以及Palmgren-Miner损伤理论,利用疲劳分析软件FE-FATIGUE的基于应力的安全强度因子分析法和MATLAB的WAFO技术对柔性车体结构疲劳寿命仿真.仿真结果包括损伤和疲劳寿命预测.  相似文献   
68.
基于有限元软件KENSLABS, 构建了水泥混凝土路面轮载损伤计算模型, 引入地基季节调整系数与零养护疲劳准则, 分析了土基模量整体削弱对路面疲劳开裂指数的影响, 探讨了当量轴载系数与多轴通过一次的计算次数对土基模量的依赖性, 研究了不同土基模量下板厚、水泥混凝土抗弯拉强度、单轴轴重、单轴每日重复作用次数等核心路面设计参数与路面开裂指数的关系。研究结果表明: 水泥混凝土路面疲劳开裂指数随着地基季节调整系数的减小而增大, 增大速度随地基季节调整系数的减小而加快, 当地基季节调整系数从1.0减小为0.8和从0.4减小为0.2时, 在单轴、双轴和三轴荷载作用下, 路面开裂指数分别增大了2.8、2.9、1.5倍和49.8、269.0、1 351.4倍; 当量轴载系数与多轴通过一次的重复计算次数受到板厚与土基模量的影响, 在土基模量为60 MPa, 板厚为15cm或35cm时, 单轴荷载比双轴荷载更易产生损伤, 双轴荷载比三轴荷载更易产生损伤, 在土基模量为20MPa, 板厚为15cm时也是如此, 但在土基模量为20MPa, 板厚为35cm时, 结论则与前相反; 水泥混凝土路面疲劳开裂指数随着面板厚度、水泥混凝土抗弯拉强度、单轴轴重、单轴每日重复作用次数而改变的幅度与土基模量直接相关, 当土基模量为20、60 MPa时, 面板厚度从21cm增加到25cm, 疲劳开裂指数分别减小1.18×10、1.18×10-2, 当混凝土抗弯拉强度从4.0 MPa增大到4.4 MPa, 疲劳开裂指数分别减小1.28、2.20×10-3, 当单轴轴重从80kN增大到160kN时, 疲劳开裂指数分别增大5.48、7.36×10-3, 当单轴荷载每日重复作用次数从50增加到90时, 疲劳开裂指数分别增大2.05×10 -1、5.07×10-4; 增设厚度为15cm的水泥稳定基层后, 设定工况下的路面疲劳开裂设计寿命增加3.42年; 在提高土基模量的同时, 宜优先考虑适当增加板厚, 严禁超载, 设置水泥稳定基层等措施, 可以控制水泥混凝土路面受轮载作用的疲劳开裂破坏。  相似文献   
69.
为研究货运繁重公路的车辆荷载谱和疲劳车辆模型, 基于佛山平胜大桥的动态称重系统采集的多时段车流数据, 归类出了车辆荷载谱的10类代表车型, 分析了代表车型的轴距、质量、轴重和超载数据, 以及沿不同车道的车辆和轴重分布特性, 提出了可用于钢桥疲劳评估的车辆荷载谱; 以疲劳加载率最大的六轴车辆为原型, 基于疲劳损伤等效原则分别提出了桥梁单向重载车道的疲劳车辆模型和简化疲劳车辆模型。计算结果表明: 平胜大桥呈现货运繁重公路的典型特征, 车辆日均通行总量达到了45 065veh, 约为《AASHTO LRFD》定义的日均通行量20 000veh的2.3倍; 疲劳车辆在全部交通流中的比例为51.6%, 为《AASHTO LRFD》定义的20.0%的2.6倍; 货车占疲劳车辆总数的45.2%, 主要分布于重载车道, 而且通行货车超载比例占到相应车型的30%70%, 最大超载货车达到了132.5t;两轴货车超载率为29.0%, 等效质量达到17.5t, 后轴等效轴重达到12.1t, 因而不能忽略两轴货车的疲劳加载贡献。对比《AASHTO LRFD》五轴标准疲劳车辆模型(前轴轴重为2.6t, 中间双联轴和后面双联轴的单轴轴重均为5.4t) 和简化标准疲劳车辆模型(前轴为2.6t, 中轴和后轴均为10.8t), 提出的六轴单向疲劳车辆模型总质量为33.1t, 前轴轴重为3.6t, 中间双联轴和后面三联轴的单轴轴重均为5.9t;简化单向疲劳车辆模型的前轴轴重为3.6t, 中轴和后轴分别为11.8、17.7t;针对重载车道提出的六轴疲劳车辆模型总质量达到了36.5t, 前轴轴重为4.0t, 联轴中的单轴轴重均为6.5t;对应的重载车道简化疲劳车模型的前轴轴重为4.0t, 中轴和后轴轴重分别为13.0、19.5t。  相似文献   
70.
开发了一种适用于道路工程的新型环氧沥青, 基于拉伸试验、黏度试验和荧光显微技术评价了其抗拉强度、断裂伸长率、黏度随时间增长规律和微观固化机理; 设计了AC-13C环氧沥青混凝土, 评价了其路用性能和疲劳特性, 分析了普通沥青混凝土、SBS改性沥青混凝土与环氧沥青混凝土作为抗疲劳层材料对柔性基层长寿命沥青混凝土路面结构厚度与疲劳寿命的影响。试验结果表明: 开发的环氧沥青抗拉强度为2.47 MPa, 断裂伸长率为2.65, 满足环氧沥青抗拉强度不小于1.5MPa、断裂伸长率不小于2的技术要求; 环氧沥青黏度增长到1Pa·s的时间为54min, 54min后, 黏度迅速增大, 因此, 施工时环氧沥青混凝土的拌和、运输与摊铺总时间应控制在54min内; 根据环氧沥青混凝土疲劳方程反推出当其疲劳寿命为10亿次时的疲劳应变极限为333με; 相对于普通沥青混凝土和SBS改性沥青混凝土, 环氧沥青混凝土抗疲劳层路面结构的疲劳寿命分别增大了2.92×105、4.39×103倍, 沥青层厚度分别减小了18、10cm; 环氧沥青的微观固化机理为环氧树脂与固化剂在沥青中逐渐从点到线、由线到网形成交联的三维网状结构。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号