首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3886篇
  免费   293篇
公路运输   843篇
综合类   1408篇
水路运输   1022篇
铁路运输   501篇
综合运输   405篇
  2024年   16篇
  2023年   27篇
  2022年   86篇
  2021年   106篇
  2020年   131篇
  2019年   108篇
  2018年   106篇
  2017年   160篇
  2016年   169篇
  2015年   207篇
  2014年   270篇
  2013年   233篇
  2012年   287篇
  2011年   375篇
  2010年   253篇
  2009年   246篇
  2008年   251篇
  2007年   282篇
  2006年   240篇
  2005年   146篇
  2004年   110篇
  2003年   69篇
  2002年   55篇
  2001年   62篇
  2000年   43篇
  1999年   19篇
  1998年   21篇
  1997年   19篇
  1996年   13篇
  1995年   14篇
  1994年   4篇
  1993年   13篇
  1992年   9篇
  1991年   8篇
  1990年   6篇
  1989年   8篇
  1988年   2篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
排序方式: 共有4179条查询结果,搜索用时 109 毫秒
71.
针对现有交通流预测方法未充分考虑多断面车流演变规律,提出基于时延特性建模的时空相关性计算方法. 该方法采用对不同断面、不同时刻交通流的分布相似性度量,对输入的车辆到达数据序列进行切割构建时空相似度矩阵,得到相邻断面之间的时延参数. 基于时延特性建模,将多断面之间的流量信息进行融合,使用长短时记忆(LSTM)网络进行流量预测. 通过对实际路段数据的预测和结果分析,验证所提方法的有效性和实用性.  相似文献   
72.
This paper proposes and analyzes a distance-constrained traffic assignment problem with trip chains embedded in equilibrium network flows. The purpose of studying this problem is to develop an appropriate modeling tool for characterizing traffic flow patterns in emerging transportation networks that serve a massive adoption of plug-in electric vehicles. This need arises from the facts that electric vehicles suffer from the “range anxiety” issue caused by the unavailability or insufficiency of public electricity-charging infrastructures and the far-below-expectation battery capacity. It is suggested that if range anxiety makes any impact on travel behaviors, it more likely occurs on the trip chain level rather than the trip level, where a trip chain here is defined as a series of trips between two possible charging opportunities (Tamor et al., 2013). The focus of this paper is thus given to the development of the modeling and solution methods for the proposed traffic assignment problem. In this modeling paradigm, given that trip chains are the basic modeling unit for individual decision making, any traveler’s combined travel route and activity location choices under the distance limit results in a distance-constrained, node-sequenced shortest path problem. A cascading labeling algorithm is developed for this shortest path problem and embedded into a linear approximation framework for equilibrium network solutions. The numerical result derived from an illustrative example clearly shows the mechanism and magnitude of the distance limit and trip chain settings in reshaping network flows from the simple case characterized merely by user equilibrium.  相似文献   
73.
In this paper, we study two closely related airline planning problems: the robust weekly aircraft maintenance routing problem (RWAMRP) and the tail assignment problem (TAP). In real life operations, the RWAMRP solution is used in tactical planning whereas the TAP solution is implemented in operational planning. The main objective of these two problems is to minimize the total expected propagated delay (EPD) of the aircraft routes. To formulate the RWAMRP, we propose a novel weekly line-of-flights (LOF) network model that can handle complex and nonlinear cost functions of EPD. Because the number of LOFs grows exponentially with the number of flights to be scheduled, we propose a two-stage column generation approach to efficiently solve large-scale real-life RWAMRPs. Because the EPD of an LOF is highly nonlinear and can be very time-consuming to accurately compute, we propose three lower bounds on the EPD to solve the pricing subproblem of the column generation. Our approach is tested on eight real-life test instances. The computational results show that the proposed approach provides very tight LP relaxation (within 0.6% of optimal solutions) and solves the test case with more than 6000 flights per week in less than three hours. We also investigate the solutions obtained by our approach over 500 simulated realizations. The simulation results demonstrate that, in all eight test instances, our solutions result in less EPDs than those obtained from traditional methods. We then extend our model and solution approach to solve realistically simulated TAP instances.  相似文献   
74.
With the advent of connected and automated vehicle technology, in this paper, we propose an innovative intersection operation scheme named as MCross: Maximum Capacity inteRsection Operation Scheme with Signals. This new scheme maximizes intersection capacity by utilizing all lanes of a road simultaneously. Lane assignment and green durations are dynamically optimized by solving a multi-objective mixed-integer non-linear programming problem. The demand conditions under which full capacity can be achieved in MCross are derived analytically. Numerical examples show that MCross can almost double the intersection capacity (increase by as high as 99.51% in comparison to that in conventional signal operation scheme).  相似文献   
75.
A number of approaches have been developed to evaluate the impact of land development on transportation infrastructure. While traditional approaches are either limited to static modeling of traffic performance or lack a strong travel behavior foundation, today’s advanced computational technology makes it feasible to model an individual traveler’s response to land development. This study integrates dynamic traffic assignment (DTA) with a positive agent-based microsimulation travel behavior model for cumulative land development impact studies. The integrated model not only enhances the behavioral implementation of DTA, but also captures traffic dynamics. It provides an advanced yet practical approach to understanding the impact of a single or series of land development projects on an individual driver’s behavior, as well as the aggregated impacts on the demand pattern and time-dependent traffic conditions. A simulation-based optimization (SBO) approach is proposed for the calibration of the modeling system. The SBO calibration approach enhances the transferability of this integrated model to other study areas. Using a case study that focuses on the cumulative land development impact along a congested corridor in Maryland, various regional and local travel behavior changes are discussed to show the capability of this tool for behavior side estimations and the corresponding traffic impacts.  相似文献   
76.
This paper generalizes and extends classical traffic assignment models to characterize the statistical features of Origin-Destination (O-D) demands, link/path flow and link/path costs, all of which vary from day to day. The generalized statistical traffic assignment (GESTA) model has a clear multi-level variance structure. Flow variance is analytically decomposed into three sources, O-D demands, route choices and measurement errors. Consequently, optimal decisions on roadway design, maintenance, operations and planning can be made using estimated probability distributions of link/path flow and system performance. The statistical equilibrium in GESTA is mathematically defined. Its multi-level statistical structure well fits large-scale data mining techniques. The embedded route choice model is consistent with the settings of O-D demands considering link costs that vary from day to day. We propose a Method of Successive Averages (MSA) based solution algorithm to solve for GESTA. Its convergence and computational complexity are analyzed. Three example networks including a large-scale network are solved to provide insights for decision making and to demonstrate computational efficiency.  相似文献   
77.
The development and calibration of complex traffic models demands parsimonious techniques, because such models often involve hundreds of thousands of unknown parameters. The Weighted Simultaneous Perturbation Stochastic Approximation (W-SPSA) algorithm has been proven more efficient than its predecessor SPSA (Spall, 1998), particularly in situations where the correlation structure of the variables is not homogeneous. This is crucial in traffic simulation models where effectively some variables (e.g. readings from certain sensors) are strongly correlated, both in time and space, with some other variables (e.g. certain OD flows). In situations with reasonably sized traffic networks, the difference is relevant considering computational constraints. However, W-SPSA relies on determining a proper weight matrix (W) that represents those correlations, and such a process has been so far an open problem, and only heuristic approaches to obtain it have been considered.This paper presents W-SPSA in a formally comprehensive way, where effectively SPSA becomes an instance of W-SPSA, and explores alternative approaches for determining the matrix W. We demonstrate that, relying on a few simplifications that marginally affect the final solution, we can obtain W matrices that considerably outperform SPSA. We analyse the performance of our proposed algorithm in two applications in motorway networks in Singapore and Portugal, using a dynamic traffic assignment model and a microscopic traffic simulator, respectively.  相似文献   
78.
This paper presents a cost scaling based successive approximation algorithm, called ε-BA (ε-optimal bush algorithm), to solve the user equilibrium traffic assignment problem by successively refining ε-optimal flows. As ε reduces to zero, the user equilibrium solution is reached. The proposed method is a variant of bush-based algorithms, and also a variant of the min-mean cycle algorithm to solve the min-cost flow by successive approximation. In ε-BA, the restricted master problem, implying traffic equilibration restricted on a bush, is solved to ε-optimality by cost scaling before bush reconstruction. We show that ε-BA can reduce the number of flow operations substantially in contrast to Dial’s Algorithm B, as the former operates flows on a set of deliberately selected cycles whose mean values are sufficiently small. Further, the bushes can be constructed effectively even if the restricted master problem is not solved to a high level of convergence, by leveraging the ε-optimality condition. As a result, the algorithm can solve a highly precise solution with faster convergence on large-scale networks compared to our implementation of Dial’s Algorithm B.  相似文献   
79.
80.
ABSTRACT

The deterministic traffic assignment problem based on Wardrop's first criterion of traffic network utilization has been widely studied in the literature. However, the assumption of deterministic travel times in these models is restrictive, given the large degree of uncertainty prevalent in urban transportation networks. In this context, this paper proposes a robust traffic assignment model that generalizes Wardrop's principle of traffic network equilibrium to networks with stochastic and correlated link travel times and incorporates the aversion of commuters to unreliable routes.

The user response to travel time uncertainty is modeled using the robust cost (RC) measure (defined as a weighted combination of the mean and standard deviation of path travel time) and the corresponding robust user equilibrium (UE) conditions are defined. The robust traffic assignment problem (RTAP) is subsequently formulated as a Variational Inequality problem. To solve the RTAP, a Gradient Projection algorithm is proposed, which involves solving a series of minimum RC path sub-problems that are theoretically and practically harder than deterministic shortest path problems. In addition, an origin-based heuristic is proposed to enhance computational performance on large networks. Numerical experiments examine the computational performance and convergence characteristics of the exact algorithm and establish the accuracy and efficiency of the origin-based heuristic on various real-world networks. Finally, the proposed RTA model is applied to the Chennai road network using empirical data, and its benefits as a normative benchmark are quantified through comparisons against the standard UE and System Optimum (SO) models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号