Knowledge of the current tyre–road friction coefficient is essential for future autonomous vehicles. The environmental conditions, and the tyre–road friction in particular, determine both the braking distance and the maximum cornering velocity and thus set the boundaries for the vehicle. Tyre–road friction is difficult to estimate during normal driving due to low levels of tyre force excitation. This problem can be solved by using active tyre force excitation. A torque is added to one or several wheels in the purpose of estimating the tyre–road friction coefficient. Active tyre force excitation provides the opportunity to design the tyre force excitation freely. This study investigates how the tyre force should be applied to minimise the error of the tyre–road friction estimate. The performance of different excitation strategies was found to be dependent on both tyre model choice and noise level. Furthermore, the advantage with using tyre models with more parameters decreased when noise was added to the force and slip ratio. 相似文献
A new regularisation of non-elliptical contact patches has been introduced, which enables building the look-up table called by us the Kalker book of tables for non-Hertzian contact (KBTNH), which is a fast creep force generator that can be used by multibody dynamics system simulation programs. The non-elliptical contact patch is regularised by a simple double-elliptical contact region (SDEC). The SDEC region is especially suitable for regularisation of contact patches obtained with approximate non-Hertzian methods for solving the normal contact problem of wheel and rail. The new regularisation is suitable for wheels and rails with any profiles, including worn profiles.
The paper describes the new procedure of regularisation of the non-elliptical contact patch, the structure of the Kalker book of tables, and parameterisation of the independent variables of the tables and creep forces.
A moderate volume Kalker book of tables for SDEC region suitable for simulation of modern running gears has been computed in co-simulation of Matlab and program CONTACT.
To access the creep forces of the Kalker book of tables, the linear interpolation has been applied.
The creep forces obtained from KBTNH have been compared to those obtained by program CONTACT and FASTSIM algorithm. FASTSIM has been applied on both the contact ellipse and the SDEC contact patch. The comparison shows that KBTNH is in good agreement with CONTACT for a wide range of creepage condition and shapes of the contact patch, whereas the use of FASTSIM on the elliptical patch and SDEC may lead to significant deviations from the reference CONTACT solutions.
The computational cost of calling creep forces from KBTNH has been estimated by comparing CPU time of FASTSIM and KBTNH. The KBTNH is 7.8–51 times faster than FASTSIM working on 36–256 discretisation elements, respectively.
In the example of application, the KBTNH has been applied for curving simulations and results compared with those obtained with the creep force generator employing the elliptical regularisation. The results significantly differ, especially in predicted creepages, because the elliptical regularisation neglects generation of the longitudinal creep force by spin creepage. 相似文献