首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4904篇
  免费   267篇
公路运输   1262篇
综合类   1639篇
水路运输   1004篇
铁路运输   969篇
综合运输   297篇
  2024年   21篇
  2023年   36篇
  2022年   75篇
  2021年   110篇
  2020年   120篇
  2019年   63篇
  2018年   78篇
  2017年   120篇
  2016年   99篇
  2015年   150篇
  2014年   321篇
  2013年   317篇
  2012年   465篇
  2011年   444篇
  2010年   307篇
  2009年   372篇
  2008年   376篇
  2007年   478篇
  2006年   451篇
  2005年   234篇
  2004年   135篇
  2003年   104篇
  2002年   77篇
  2001年   88篇
  2000年   35篇
  1999年   21篇
  1998年   14篇
  1997年   10篇
  1996年   10篇
  1995年   2篇
  1994年   8篇
  1993年   2篇
  1992年   6篇
  1991年   7篇
  1990年   4篇
  1989年   5篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
排序方式: 共有5171条查询结果,搜索用时 15 毫秒
81.
Recently connected vehicle (CV) technology has received significant attention thanks to active pilot deployments supported by the US Department of Transportation (USDOT). At signalized intersections, CVs may serve as mobile sensors, providing opportunities of reducing dependencies on conventional vehicle detectors for signal operation. However, most of the existing studies mainly focus on scenarios that penetration rates of CVs reach certain level, e.g., 25%, which may not be feasible in the near future. How to utilize data from a small number of CVs to improve traffic signal operation remains an open question. In this work, we develop an approach to estimate traffic volume, a key input to many signal optimization algorithms, using GPS trajectory data from CV or navigation devices under low market penetration rates. To estimate traffic volumes, we model vehicle arrivals at signalized intersections as a time-dependent Poisson process, which can account for signal coordination. The estimation problem is formulated as a maximum likelihood problem given multiple observed trajectories from CVs approaching to the intersection. An expectation maximization (EM) procedure is derived to solve the estimation problem. Two case studies were conducted to validate our estimation algorithm. One uses the CV data from the Safety Pilot Model Deployment (SPMD) project, in which around 2800 CVs were deployed in the City of Ann Arbor, MI. The other uses vehicle trajectory data from users of a commercial navigation service in China. Mean absolute percentage error (MAPE) of the estimation is found to be 9–12%, based on benchmark data manually collected and data from loop detectors. Considering the existing scale of CV deployments, the proposed approach could be of significant help to traffic management agencies for evaluating and operating traffic signals, paving the way of using CVs for detector-free signal operation in the future.  相似文献   
82.
The growth of vehicle sales and use internationally requires the consumption of significant quantities of energy and materials, and contributes to the deterioration of air-quality and climate conditions. Advanced propulsion systems and electric drive vehicles have substantially different characteristics and impacts. They require life cycle assessments and detailed comparisons with gasoline powered vehicles which, in turn, should lead to critical updates of traditional models and assumptions. For a comprehensive comparison of advanced and traditional light duty vehicles, a model is developed that integrates external costs, including emissions and time losses, with societal and consumer life cycle costs. Life cycle emissions and time losses are converted into costs for seven urban light duty vehicles. The results, which are based on vehicle technology characteristics and transportation impacts on environment, facilitate vehicle comparisons and support policy making in transportation. Substantially, more sustainable urban transportation can be achieved in the short-term by promoting policies that increase vehicle occupancy; in the intermediate-term by increasing the share of hybrid vehicles in the car market and in the long-term by the widespread use of electric vehicles. A sensitivity-analysis of life cost results revealed that vehicle costs change significantly for different geographical areas depending on vehicle taxation, pricing of gasoline, electric power and pollution. Current practices in carbon and air quality pricing favor oil and coal based technologies. However, increasing the cost of electricity from coal and other fossil fuels would increase the variable cost for electric vehicles, and tend to favor the variable cost of hybrid vehicles.  相似文献   
83.
Bus fuel economy is deeply influenced by the driving cycles, which vary for different route conditions. Buses optimized for a standard driving cycle are not necessarily suitable for actual driving conditions, and, therefore, it is critical to predict the driving cycles based on the route conditions. To conveniently predict representative driving cycles of special bus routes, this paper proposed a prediction model based on bus route features, which supports bus optimization. The relations between 27 inter-station characteristics and bus fuel economy were analyzed. According to the analysis, five inter-station route characteristics were abstracted to represent the bus route features, and four inter-station driving characteristics were abstracted to represent the driving cycle features between bus stations. Inter-station driving characteristic equations were established based on the multiple linear regression, reflecting the linear relationships between the five inter-station route characteristics and the four inter-station driving characteristics. Using kinematic segment classification, a basic driving cycle database was established, including 4704 different transmission matrices. Based on the inter-station driving characteristic equations and the basic driving cycle database, the driving cycle prediction model was developed, generating drive cycles by the iterative Markov chain for the assigned bus lines. The model was finally validated by more than 2 years of acquired data. The experimental results show that the predicted driving cycle is consistent with the historical average velocity profile, and the prediction similarity is 78.69%. The proposed model can be an effective way for the driving cycle prediction of bus routes.  相似文献   
84.
Wider deployment of alternative fuel vehicles (AFVs) can help with increasing energy security and transitioning to clean vehicles. Ideally, adopters of AFVs are able to maintain the same level of mobility as users of conventional vehicles while reducing energy use and emissions. Greater knowledge of AFV benefits can support consumers’ vehicle purchase and use choices. The Environmental Protection Agency’s fuel economy ratings are a key source of potential benefits of using AFVs. However, the ratings are based on pre-designed and fixed driving cycles applied in laboratory conditions, neglecting the attributes of drivers and vehicle types. While the EPA ratings using pre-designed and fixed driving cycles may be unbiased they are not necessarily precise, owning to large variations in real-life driving. Thus, to better predict fuel economy for individual consumers targeting specific types of vehicles, it is important to find driving cycles that can better represent consumers’ real-world driving practices instead of using pre-designed standard driving cycles. This paper presents a methodology for customizing driving cycles to provide convincing fuel economy predictions that are based on drivers’ characteristics and contemporary real-world driving, along with validation efforts. The methodology takes into account current micro-driving practices in terms of maintaining speed, acceleration, braking, idling, etc., on trips. Specifically, using a large-scale driving data collected by in-vehicle Global Positioning System as part of a travel survey, a micro-trips (building block) library for California drivers is created using 54 million seconds of vehicle trajectories on more than 60,000 trips, made by 3000 drivers. To generate customized driving cycles, a new tool, known as Case Based System for Driving Cycle Design, is developed. These customized cycles can predict fuel economy more precisely for conventional vehicles vis-à-vis AFVs. This is based on a consumer’s similarity in terms of their own and geographical characteristics, with a sample of micro-trips from the case library. The AFV driving cycles, created from real-world driving data, show significant differences from conventional driving cycles currently in use. This further highlights the need to enhance current fuel economy estimations by using customized driving cycles, helping consumers make more informed vehicle purchase and use decisions.  相似文献   
85.
随着科技的进步及项目管理水平的提高,BIM技术应运而生。本文以清华珠三角研究院粤港澳大湾区创新基地项目为依托,从应用目标、应用前准备工作、前期策划管理、技术管理、质量安全管理、物资设备管理、进度管理、经济成本管理等方面开展BIM技术在公建项目施工中的应用研究,结果表明:使用BIM技术,使项目管理走向精细化、全面化、高效化,并提高质量标准,增加安全保障,减少项目成本,提高项目利润率;同时与AI技术相结合,使BIM技术更加具有简便性,产出更大效益。  相似文献   
86.
Transportation is a major cause for environmental degradation via exhaust emissions. For many transit-oriented metropolitan areas, bus trips often constitute a sizeable mode share. Managing the bus fleet, in particular updating buses to comply with the newer emissions standards, therefore, can have a substantial impact on transportation-induced air quality. This paper presents the approach of remaining life additional benefit–cost (RLABC) analysis for maximising the total net benefit by either early-retiring or retrofitting the current bus fleet within their lifespans. By referring to the net benefits for different bus types estimated by RLABC analysis, the most beneficial management scheme for the current bus fleet can be identified. Optimal bus fleet management (BFM) models based on the RLABC analysis for the operator and the government are developed. Then a government subsidy plan is produced to achieve win–win solutions, which will offer efficient and flexible management schemes. To illustrate the approach, the largest bus company in Hong Kong, which carries more than 23% of the total trips in Hong Kong, is taken as a case study example. Instead of adopting a fixed retirement plan, such as replacing buses at the age of 17 as is currently practised, the proposed method develops an optimal BFM scheme that progressively phases out buses or retrofits them. This study produces promising results to demonstrate the large benefit of this approach for optimal bus fleet management.  相似文献   
87.
吴冕  王芳  罗瑞龙  姜哲  崔维成 《船舶力学》2021,25(10):1356-1366
深海超高压环境模拟容器用于模拟水下压力环境,其容器壁上承受反复载荷,容易产生疲劳裂纹.疲劳裂纹扩展是影响其断裂的主要因素.本文旨在分析半椭圆裂纹在老化的深海超高压环境模拟容器中的扩展行为,评估容器的安全性,因此对材料20MnMoNb钢的裂纹扩展特性进行了试验研究,首先考虑三角形和梯形加载情况,通过比较两组实验结果,考察了其材料对保载时间的敏感性.采用基于统一的裂纹扩展率模型的三维有限元方法进行了疲劳裂纹扩展计算,并通过CT试样的一组数值和实验结果进行了验证,最后建立了不同初始尺寸、展弦比和倾角的裂纹有限元模型,并根据裂纹在容器内壁的容许深度准则,计算了容器的剩余寿命.其分析结果可为深海超高压环境模拟容器可靠性评估提供参考.  相似文献   
88.
This paper uses a case study of a UK inter-urban road, to explore the impact of extending the system boundary of road pavement life cycle assessment (LCA) to include increased traffic emissions due to delays during maintenance. Some previous studies have attempted this but have been limited to hypothetical scenarios or simplified traffic modelling, with no validation or sensitivity analysis. In this study, micro-simulation modelling of traffic was used to estimate emissions caused by delays at road works, for several traffic management options. The emissions were compared to those created by the maintenance operation, estimated using an LCA model. In this case study, the extra traffic emissions caused by delays at road works are relatively small, compared to those from the maintenance process, except for hydrocarbon emissions. However, they are generally close to, or above, the materiality threshold recommended in PAS2050 for estimating carbon footprints, and reach 5–10% when traffic flow levels are increased (hypothetically) or when traffic management is imposed outside times of lowest traffic flow. It is recommended, therefore, that emissions due to traffic disruption at road works should be included within the system boundary of road pavement LCA and carbon footprint studies and should be considered in developing guidelines for environmental product declarations of road pavement maintenance products and services.  相似文献   
89.
This study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of $3.19 per day when exclusively charging at home, compared to $3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. When workplace charging is available, the optimal electric driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Moreover, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.  相似文献   
90.
Compared with most optimization methods for capacity evaluation, integrating capacity analysis with timetabling can reveal the types of train line plans and operating rules that have a positive influence on improving capacity utilization as well as yielding more accurate analyses. For most capacity analyses and cyclic timetabling methods, the cycle time is a constant (e.g., one or two hours). In this paper, we propose a minimum cycle time calculation (MCTC) model based on the periodic event scheduling problem (PESP) for a given train line plan, which is promising for macroscopic train timetabling and capacity analysis. In accordance with train operating rules, a non-collision constraint and a series of flexible overtaking constraints (FOCs) are constructed based on variations of the original binary variables in the PESP. Because of the complexity of the PESP, an iterative approximation (IA) method for integration with the CPLEX solver is proposed. Finally, two hypothetical cases are considered to analyze railway capacity, and several influencing factors are studied, including train regularity, train speed, line plan specifications (train stops), overtaking and train heterogeneity. The MCTC model and IA method are used to test a real-world case involving the timetable of the Beijing–Shanghai high-speed railway in China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号