首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35503篇
  免费   1977篇
公路运输   9889篇
综合类   11033篇
水路运输   7913篇
铁路运输   6905篇
综合运输   1740篇
  2024年   170篇
  2023年   240篇
  2022年   678篇
  2021年   1155篇
  2020年   1235篇
  2019年   759篇
  2018年   582篇
  2017年   781篇
  2016年   798篇
  2015年   1195篇
  2014年   2856篇
  2013年   2092篇
  2012年   3226篇
  2011年   3262篇
  2010年   2569篇
  2009年   2282篇
  2008年   2324篇
  2007年   3159篇
  2006年   2793篇
  2005年   1585篇
  2004年   1007篇
  2003年   678篇
  2002年   473篇
  2001年   407篇
  2000年   248篇
  1999年   151篇
  1998年   98篇
  1997年   85篇
  1996年   104篇
  1995年   85篇
  1994年   84篇
  1993年   59篇
  1992年   45篇
  1991年   58篇
  1990年   41篇
  1989年   35篇
  1988年   20篇
  1987年   11篇
  1986年   12篇
  1985年   20篇
  1984年   18篇
排序方式: 共有10000条查询结果,搜索用时 859 毫秒
751.
水中悬浮隧道交通荷载模拟方法研究   总被引:1,自引:0,他引:1  
梁波  蒋博林 《隧道建设》2017,37(10):1232-1238
为研究水中悬浮隧道交通荷载的合理模拟方法以及交通荷载对隧道结构的影响,借鉴铁路、公路交通荷载的模拟方法,综合考虑车辆轮载、路面不平度、行车速度以及外部激励荷载等影响因素的共同作用,提出水中悬浮隧道交通荷载的模拟表达式。通过数值模拟计算,分析悬浮隧道交通荷载的变化特征,并研究不同交通荷载模拟方法对悬浮隧道结构振动位移响应的影响。结果表明:文章提出的交通荷载模拟方法计算结果符合移动振动荷载的波动性和周期性特征。在对结构振动位移响应影响方面,固定均布荷载相当于静载,移动集中荷载和移动振动荷载时的位移变化幅值相对固定均布荷载时的大且影响相似,但移动振动荷载时的振幅稍大,体现了交通荷载中动荷载部分对结构振动位移响应的影响,更适合用来模拟悬浮隧道中的交通荷载。  相似文献   
752.
白云  石振明  石雪飞 《隧道建设》2017,37(10):1201-1208
随着我国"一带一路"倡议的推进,跨国运输通道的建设成为倡议实施的关键环节之一,而我国建设复杂地质条件下跨国基础设施的经验尚不丰富。"中—尼—印铁路通道"是一条途经尼泊尔,连接中国和印度2个大国的运输通道,基于实地考察,分析该通道建设的必要性及建成后的效益,对线路进行初步规划,并总结该通道建设的难点:铁路轨道坡度大;沿线区域地质构造复杂;周边基础设施落后,施工条件恶劣;大量深长隧道以及大跨径高桥梁;环境以及气候条件复杂。同时对沿线隧道以及桥梁的建设可行性进行分析,并给出施工建议:沿线隧道采用以TBM法为主、钻爆法为辅的施工方法;桥梁建设则因地制宜,根据不同区间的地质特点,采用相应的建设方法。  相似文献   
753.
唐强  秦岭  陈军  杨剑雄  张震  王冰冰 《隧道建设》2017,37(12):1613-1621
隧道预切槽施工技术在国外应用比较广泛,但在我国应用还较少。针对黄土地质专项研制了国内首台拱架式预切槽机,并在黄土隧道进行了施工试验。通过施工试验,掌握设备定位、分区切灌、设备行走、施工作业组织等关键技术,并提出应用改进及优化措施。试验结果表明切槽系统工作状态和设备切削、喷灌功能满足设计及施工试验要求,为预切槽同步切削喷灌一体化研究提供了数据支撑和研究方向。  相似文献   
754.
ABSTRACT

A state-of-the-art discussion on the applications of magneto-rheological (MR) suspensions for improving ride comfort, handling, and stability in ground vehicles is discussed for both road and rail applications. A historical perspective on the discovery and engineering development of MR fluids is presented, followed by some of the common methods for modelling their non-Newtonian behaviour. The common modes of the MR fluids are discussed, along with the application of the fluid in valve mode for ground vehicles’ dampers (or shock absorbers). The applications span across nearly all road vehicles, including automobiles, trains, semi-trucks, motorcycles, and even bicycles. For each type of vehicle, the results of some of the past studies is presented briefly, with reference to the originating study. It is discussed that Past experimental and modelling studies have indicated that MR suspensions provide clear advantages for ground vehicles that far surpasses the performance of passive suspension. For rail vehicles, the primary advantage is in terms of increasing the speed at which the onset of hunting occurs, whereas for road vehicles – mainly automobiles – the performance improvements are in terms of a better balance between vehicle ride, handling, and stability. To further elaborate on this point, a single-suspension model is used to develop an index-based approach for studying the compromise that is offered by vehicle suspensions, using the H2 optimisation approach. Evaluating three indices based on the sprung-mass acceleration, suspension rattlespace, and tyre deflection, it is clearly demonstrated that MR suspensions significantly improve road vehicle’s ride comfort, stability, and handling in comparison with passive suspensions. For rail vehicles, the simulation results indicate that using MR suspensions with an on-off switching control can increase the speed at which the on-set of hunting occurs by as much as 50% to more than 300%.  相似文献   
755.
ABSTRACT

Significant developments in longitudinal train simulation and an overview of the approaches to train models and modelling vehicle force inputs are firstly presented. The most important modelling task, that of the wagon connection, consisting of energy absorption devices such as draft gears and buffers, draw gear stiffness, coupler slack and structural stiffness is then presented. Detailed attention is given to the modelling approaches for friction wedge damped and polymer draft gears. A significant issue in longitudinal train dynamics is the modelling and calculation of the input forces – the co-dimensional problem. The need to push traction performances higher has led to research and improvement in the accuracy of traction modelling which is discussed. A co-simulation method that combines longitudinal train simulation, locomotive traction control and locomotive vehicle dynamics is presented. The modelling of other forces, braking propulsion resistance, curve drag and grade forces are also discussed. As extensions to conventional longitudinal train dynamics, lateral forces and coupler impacts are examined in regards to interaction with wagon lateral and vertical dynamics. Various applications of longitudinal train dynamics are then presented. As an alternative to the tradition single wagon mass approach to longitudinal train dynamics, an example incorporating fully detailed wagon dynamics is presented for a crash analysis problem. Further applications of starting traction, air braking, distributed power, energy analysis and tippler operation are also presented.  相似文献   
756.
This paper proposes a signal-based fault detection and isolation (FDI) system for heavy haul wagons considering the special requirements of low cost and robustness. The sensor network of the proposed system consists of just two accelerometers mounted on the front left and rear right of the carbody. Seven fault indicators (FIs) are proposed based on the cross-correlation analyses of the sensor-collected acceleration signals. Bolster spring fault conditions are focused on in this paper, including two different levels (small faults and moderate faults) and two locations (faults in the left and right bolster springs of the first bogie). A fully detailed dynamic model of a typical 40t axle load heavy haul wagon is developed to evaluate the deterioration of dynamic behaviour under proposed fault conditions and demonstrate the detectability of the proposed FDI method. Even though the fault conditions considered in this paper did not deteriorate the wagon dynamic behaviour dramatically, the proposed FIs show great sensitivity to the bolster spring faults. The most effective and efficient FIs are chosen for fault detection and classification. Analysis results indicate that it is possible to detect changes in bolster stiffness of ±25% and identify the fault location.  相似文献   
757.
Accurate lateral load transfer estimation plays an important role in improving the performance of the active rollover prevention system equipped in commercial vehicles. This estimation depends on the accurate prediction of roll angles for both the sprung and the unsprung subsystems. This paper proposes a novel computational method for roll-angle estimation in commercial vehicles employing sensors which are already used in a vehicle dynamic control system without additional expensive measurement units. The estimation strategy integrates two blocks. The first block contains a sliding-mode observer which is responsible for calculating the lateral tyre forces, while in the second block, the Kalman filter estimates the roll angles of the sprung mass and those of axles in the truck. The validation is conducted through MATLAB/TruckSim co-simulation. Based on the comparison between the estimated results and the simulation results from TruckSim, it can be concluded that the proposed estimation method has a promising tracking performance with low computational cost and high convergence speed. This approach enables a low-cost solution for the rollover prevention in commercial vehicles.  相似文献   
758.
The vehicle–track coupled system has a random nature in the time–space domain. This paper proposes a computational model to analyse the temporal–spatial stochastic vibrations of vehicle–track systems, where the vehicle–track system is divided into a vehicle subsystem, track subsystem, and interfacial subsystem between the wheel and rail. In this model, the time-varying randomicity of dynamical parameters of the vehicle system, correlation, and randomness of the track structural parameters in the time–space joint dimensions, and randomness of the track random irregularities are considered. A probability dimension-reduction method was used to randomly combine different random variables. Furthermore, the probability density evolution method was applied to solve the delivery problem of probabilities between excitation inputs and response outputs. The temporal–spatial stochastic vibrations of the vehicle–track system with different coefficients of variation were studied, in which we assumed that the dynamic parameters obeyed the normal distribution, and the stochastic simulation method of the track random irregularities is probed into. The calculated results from this model are consistent with the actual measured results and physical conceptions. Thus, the temporal–spatial stochastic evolutionary mechanism can be explored, and the limits of dynamic indices can be formulated by using this developed model.  相似文献   
759.
Trains crashing onto heavy road vehicles stuck across rail tracks are more likely occurrences at level crossings due to ongoing increase in the registration of heavy vehicles and these long heavy vehicles getting caught in traffic after partly crossing the boom gate; these incidents lead to significant financial losses and societal costs. This paper presents an investigation of the dynamic responses of trains under frontal collision on road trucks obliquely stuck on rail tracks at level crossings. This study builds a nonlinear three-dimensional multi-body dynamic model of a passenger train colliding with an obliquely stuck road truck on a ballasted track. The model is first benchmarked against several train dynamics packages and its predictions of the dynamic response and derailment potential are shown rational. A geometry-based derailment assessment criterion is applied to evaluate the derailment behaviour of the frontal obliquely impacted trains under different conditions. Sensitivities of several key influencing parameters, such as the train impact speed, the truck mass, the friction at truck tyres, the train–truck impact angle, the contact friction at the collision zone, the wheel/rail friction and the train suspension are reported.  相似文献   
760.
4缸柴油机停缸仿真及试验研究   总被引:1,自引:0,他引:1  
采用停缸技术对小型4缸柴油机的燃油消耗率和排放进行了仿真和试验研究。利用GT-Power建立模型并模拟了停缸位置对燃油消耗率的影响,结合传热损失等因素确定了试验停缸位置。在断油式停缸和断油断气式停缸模式下进行试验和燃烧分析。试验结果表明:停缸后缸内等容度降低;断油式停缸后燃油消耗率和NOx增大但炭烟减少;断油断气式停缸后部分试验点燃油消耗率降低,但NOx和炭烟排放增加。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号