首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7940篇
  免费   620篇
公路运输   1395篇
综合类   4466篇
水路运输   1130篇
铁路运输   753篇
综合运输   816篇
  2024年   29篇
  2023年   105篇
  2022年   241篇
  2021年   310篇
  2020年   324篇
  2019年   250篇
  2018年   252篇
  2017年   313篇
  2016年   363篇
  2015年   375篇
  2014年   592篇
  2013年   552篇
  2012年   550篇
  2011年   681篇
  2010年   561篇
  2009年   488篇
  2008年   469篇
  2007年   615篇
  2006年   502篇
  2005年   277篇
  2004年   206篇
  2003年   146篇
  2002年   69篇
  2001年   137篇
  2000年   30篇
  1999年   18篇
  1998年   22篇
  1997年   10篇
  1996年   12篇
  1995年   8篇
  1994年   10篇
  1993年   5篇
  1992年   9篇
  1991年   8篇
  1990年   3篇
  1989年   8篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
排序方式: 共有8560条查询结果,搜索用时 15 毫秒
981.
Car following models have been studied with many diverse approaches for decades. Nowadays, technological advances have significantly improved our traffic data collection capabilities. Conventional car following models rely on mathematical formulas and are derived from traffic flow theory; a property that often makes them more restrictive. On the other hand, data-driven approaches are more flexible and allow the incorporation of additional information to the model; however, they may not provide as much insight into traffic flow theory as the traditional models. In this research, an innovative methodological framework based on a data-driven approach is proposed for the estimation of car-following models, suitable for incorporation into microscopic traffic simulation models. An existing technique, i.e. locally weighted regression (loess), is defined through an optimization problem and is employed in a novel way. The proposed methodology is demonstrated using data collected from a sequence of instrumented vehicles in Naples, Italy. Gipps’ model, one of the most extensively used car-following models, is calibrated against the same data and used as a reference benchmark. Optimization issues are raised in both cases. The obtained results suggest that data-driven car-following models could be a promising research direction.  相似文献   
982.
We examine the various forces influencing the development and uptake of environmentally beneficial technical changes, focusing on airline technology. Within this context, we consider not only the nature of competition within the final market in which aircraft, an intermediate product, are sold, but also that of the product market itself, the commercial airline industry. The reasons for the gradual reduction in CO2 per seat per aircraft movement in aircraft design are examined in terms of the real costs of aviation fuel, changes in the nature of the supply industry, the movement towards carbon cap-trade policies, and endogenous technical progress in the technology of the industry. The latter being taken as an empirical proxy for the role market forms play in influencing the fuel efficiency of the types of aircraft used. The results support the existence of these latter forces on the demand for aircraft types, allowing for other influences that affect aircraft technology.  相似文献   
983.
The use of smartphone technology is increasingly considered a state-of-the-art practice in travel data collection. Researchers have investigated various methods to automatically predict trip characteristics based upon locational and other smartphone sensing data. Of the trip characteristics being studied, trip purpose prediction has received relatively less attention. This research develops trip purpose prediction models based upon online location-based search and discovery services (specifically, Google Places API) and a limited set of trip data that are usually available upon the completion of the trip. The models have the potential to be integrated with smartphone technology to produce real-time trip purpose prediction. We use a recent, large-scale travel behavior survey that is augmented by downloaded Google Places information on each trip destination to develop and validate the models. Two statistical and machine learning prediction approaches are used, including nested logit and random forest methods. Both sets of models show that Google Places information is a useful predictor of trip purpose in situations where activity- and person-related information is uncollectable, missing, or unreliable. Even when activity- and person-related information is available, incorporating Google Places information provides incremental improvements in trip purpose prediction.  相似文献   
984.
This paper describes a computationally efficient parallel-computing framework for mesoscopic transportation simulation on large-scale networks. By introducing an overall data structure for mesoscopic dynamic transportation simulation, we discuss a set of implementation issues for enabling flexible parallel computing on a multi-core shared memory architecture. First, we embed an event-based simulation logic to implement a simplified kinematic wave model and reduce simulation overhead. Second, we present a space-time-event computing framework to decompose simulation steps to reduce communication overhead in parallel execution and an OpenMP-based space-time-processor implementation method that is used to automate task partition tasks. According to the spatial and temporal attributes, various types of simulation events are mapped to independent logical processes that can concurrently execute their procedures while maintaining good load balance. We propose a synchronous space-parallel simulation strategy to dynamically assign the logical processes to different threads. The proposed method is then applied to simulate large-scale, real-world networks to examine the computational efficiency under different numbers of CPU threads. Numerical experiments demonstrate that the implemented parallel computing algorithm can significantly improve the computational efficiency and it can reach up to a speedup of 10 on a workstation with 32 computing threads.  相似文献   
985.
Nowadays, new mobility information can be derived from advanced traffic surveillance systems that collect updated traffic measurements, both in fixed locations and over specific corridors or paths. Such recent technological developments point to challenging and promising opportunities that academics and practitioners have only partially explored so far.The paper looks at some of these opportunities within the Dynamic Demand Estimation problem (DDEP). At first, data heterogeneity, accounting for different sets of data providing a wide spatial coverage, has been investigated for the benefit of off-line demand estimation. In an attempt to mimic the current urban networks monitoring, examples of complex real case applications are being reported where route travel times and route choice probabilities from probe vehicles are exploited together with common link traffic measurements.Subsequently, on-line detection of non-recurrent conditions is being recorded, adopting a sequential approach based on an extension of the Kalman Filter theory called Local Ensemble Transformed Kalman Filter (LETKF).Both the off-line and the on-line investigations adopt a simulation approach capable of capturing the highly nonlinear dependence between the travel demand and the traffic measurements through the use of dynamic traffic assignment models. Consequently, the possibility of using collected traffic information is enhanced, thus overcoming most of the limitations of current DDEP approaches found in the literature.  相似文献   
986.
This paper illustrates a ride matching method for commuting trips based on clustering trajectories, and a modeling and simulation framework with ride-sharing behaviors to illustrate its potential impact. It proposes data mining solutions to reduce traffic demand and encourage more environment-friendly behaviors. The main contribution is a new data-driven ride-matching method, which tracks personal preferences of road choices and travel patterns to identify potential ride-sharing routes for carpool commuters. Compared with prevalent carpooling algorithms, which allow users to enter departure and destination information for on-demand trips, the proposed method focuses more on regular commuting trips. The potential effectiveness of the approach is evaluated using a traffic simulation-assignment framework with ride-sharing participation using the routes suggested by our algorithm. Two types of ride-sharing participation scenarios, with and without carpooling information, are considered. A case study with the Chicago tested is conducted to demonstrate the proposed framework’s ability to support better decision-making for carpool commuters. The results indicate that with ride-matching recommendations using shared vehicle trajectory data, carpool programs for commuters contribute to a less congested traffic state and environment-friendly travel patterns.  相似文献   
987.
Vehicle electrification is a promising approach towards attaining green transportation. However, the absence of charging stations limits the penetration of electric vehicles. Current approaches for optimizing the locations of charging stations suffer from challenges associated with spatial–temporal dynamic travel demands and the lengthy period required for the charging process. The present article uses the electric taxi (ET) as an example to develop a spatial–temporal demand coverage approach for optimizing the placement of ET charging stations in the space–time context. To this end, public taxi demands with spatial and temporal attributes are extracted from massive taxi GPS data. The cyclical interactions between taxi demands, ETs, and charging stations are modeled with a spatial–temporal path tool. A location model is developed to maximize the level of ET service on the road network and the level of charging service at the stations under spatial and temporal constraints such as the ET range, the charging time, and the capacity of charging stations. The reduced carbon emission generated by used ETs with located charging stations is also evaluated. An experiment conducted in Shenzhen, China demonstrates that the proposed approach not only exhibits good performance in determining ET charging station locations by considering temporal attributes, but also achieves a high quality trade-off between the levels of ET service and charging service. The proposed approach and obtained results help the decision-making of urban ET charging station siting.  相似文献   
988.
In this paper, a novel mesoscopic multilane model is proposed to enable simultaneous simulation of mandatory and discretionary lane-changing behaviors to realistically capture multilane traffic dynamics. The model considers lane specific fundamental diagrams to simulate dynamic heterogeneous lane flow distributions on expressways. Moreover, different priority levels are identified according to different lane-changing motivations and the corresponding levels of urgency. Then, an algorithm is proposed to estimate the dynamic mandatory and discretionary lane-changing demands. Finally, the lane flow propagation is defined by the reaction law of the demand–supply functions, which can be regarded as an extension of the Incremental-Transfer and/or Priority Incremental-Transfer principles. The proposed mesoscopic multilane cell transmission model is calibrated and validated on a complex weaving section of the State Route 241 freeway in Orange County, California, showing both the positive and negative impact of lane changing maneuvers, e.g., balancing effect and capacity drop, respectively. Moreover, the empirical study verifies that the model requires no additional data other than the cell transmission model does. Thus, the proposed model can be deployed as a simple simulation tool for accessing dynamic mesoscopic multilane traffic state from data available to most management centers, and also the potential application in predicting the impact of traffic incident or lane control strategy.  相似文献   
989.
This paper develops an agent-based modeling approach to predict multi-step ahead experienced travel times using real-time and historical spatiotemporal traffic data. At the microscopic level, each agent represents an expert in a decision-making system. Each expert predicts the travel time for each time interval according to experiences from a historical dataset. A set of agent interactions is developed to preserve agents that correspond to traffic patterns similar to the real-time measurements and replace invalid agents or agents associated with negligible weights with new agents. Consequently, the aggregation of each agent’s recommendation (predicted travel time with associated weight) provides a macroscopic level of output, namely the predicted travel time distribution. Probe vehicle data from a 95-mile freeway stretch along I-64 and I-264 are used to test different predictors. The results show that the agent-based modeling approach produces the least prediction error compared to other state-of-the-practice and state-of-the-art methods (instantaneous travel time, historical average and k-nearest neighbor), and maintains less than a 9% prediction error for trip departures up to 60 min into the future for a two-hour trip. Moreover, the confidence boundaries of the predicted travel times demonstrate that the proposed approach also provides high accuracy in predicting travel time confidence intervals. Finally, the proposed approach does not require offline training thus making it easily transferable to other locations and the fast algorithm computation allows the proposed approach to be implemented in real-time applications in Traffic Management Centers.  相似文献   
990.
Carpooling is an effective solution to major environmental problems but it is insufficiently used, particularly in France. In order to increase carpooling, it is important to understand why people do or not carpool. This study, carried out a large sample of drivers, was aimed at (1) identifying whether or not people carpool, (2) investigating the factual data (e.g. socio-demographics, transportation accessibility) and motivational factors (e.g. attitudes regarding car use, public transportation, environment) upon which carpoolers and non-carpoolers differ, and (3) highlighting the main determinants of the practice of carpooling. An online survey was administered to 1207 French drivers (48% men, ages 19–87) recruited by means of a random-quota method. In our sample, 52.5% of the participants said they were using carpooling. Carpoolers and non-carpoolers were similar in terms of kilometers driven per year, distance to their workplace or schools/universities, and public transportation accessibility. Compared to non-carpoolers, carpoolers were more likely to be women, have children, have positive attitudes toward public transport, and be more environmentally aware. These results suggest various different strategies for increasing the number of carpoolers and the frequency of carpooling use by taking into account the gender of road users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号