首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12847篇
  免费   1911篇
公路运输   4227篇
综合类   3993篇
水路运输   466篇
铁路运输   5527篇
综合运输   545篇
  2024年   119篇
  2023年   218篇
  2022年   549篇
  2021年   881篇
  2020年   765篇
  2019年   529篇
  2018年   387篇
  2017年   625篇
  2016年   639篇
  2015年   719篇
  2014年   958篇
  2013年   766篇
  2012年   1275篇
  2011年   1127篇
  2010年   735篇
  2009年   587篇
  2008年   684篇
  2007年   757篇
  2006年   739篇
  2005年   509篇
  2004年   369篇
  2003年   224篇
  2002年   123篇
  2001年   165篇
  2000年   55篇
  1999年   23篇
  1998年   23篇
  1997年   46篇
  1996年   50篇
  1995年   31篇
  1994年   15篇
  1993年   8篇
  1992年   11篇
  1991年   13篇
  1990年   13篇
  1989年   14篇
  1988年   7篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
81.
The dynamic model was developed to evaluate vibration accelerations and ride comforts during the running of the Korean-standardised rubber-tired light rail vehicle. Ride comfort indexes were analysed and tested in accordance with UIC 513R by using the dynamic model and the actual vehicle in the test track. Based on the comparisons between analysis results and test results, the validity of the developed dynamic model was evaluated. It was verified whether or not the developed Korean-standardised rubber-tired light rail vehicle met the specified target specification on ride comfort. In addition, the influence of the wearing of guide wheels on ride comfort was estimated.  相似文献   
82.
This work presents a virtual rider for the guidance of a nonlinear motorcycle model. The target motion is defined in terms of roll angle and speed. The virtual rider inputs are the steering torque, the rear-wheel driving/braking torque and front-wheel braking torque. The virtual rider capability is assessed by guiding the nonlinear motorcycle model in demanding manoeuvres with roll angles of 50° and longitudinal accelerations up to 0.8 g. Considerations on the effective preview distance used by the virtual rider are included.  相似文献   
83.
The steady-state handling properties of a rigid vehicle with a tandem rear axle configuration are developed. This work uses conventions resulting in a parsimonious characterisation of steady-state handling of such three-axle vehicles that is shown to be a simple extension of the well-known two-axle bicycle model. Specifically the concepts of understeer and wheelbase are developed for a three-axle vehicle, and shown to play the same role in characterising vehicle handling as they do in the well-known two-axle vehicle model. An equivalent wheelbase of a three-axle vehicle is expressed in terms of vehicle geometry and cornering stiffness of each axle. The model developed in this work is reconciled with previous models that make use of simplifying assumptions found in the literature.  相似文献   
84.
It is well known that track defects cause profound effects to the dynamics of railway wagons; normally such problems are examined for cases of wagons running at a constant speed. Brake/traction torques affect the speed profile due to the wheel–rail contact characteristics but most of the wagon–track interaction models do not explicitly consider them in simulation. The authors have recently published a model for the dynamics of wagons subject to braking/traction torques on a perfect track by explicitly considering the pitch degree of freedom for wheelsets. The model is extended for cases of lateral and vertical track geometry defects and worn railhead and wheel profiles. This paper presents the results of the analyses carried out using the model extended to the dynamics of wagons containing less ideal wheel profiles running on tracks with geometry defects and worn rails.  相似文献   
85.
A study is performed on the influence of some typical railway vehicle and track parameters on the level of ground vibrations induced in the neighbourhood. The results are obtained from a previously validated simulation framework considering in a first step the vehicle/track subsystem and, in a second step, the response of the soil to the forces resulting from the first analysis. The vehicle is reduced to a simple vertical 3-dof model, corresponding to the superposition of the wheelset, the bogie and the car body. The rail is modelled as a succession of beam elements elastically supported by the sleepers, lying themselves on a flexible foundation representing the ballast and the subgrade. The connection between the wheels and the rails is realised through a non-linear Hertzian contact. The soil motion is obtained from a finite/infinite element model. The investigated vehicle parameters are its type (urban, high speed, freight, etc.) and its speed. For the track, the rail flexural stiffness, the railpad stiffness, the spacing between sleepers and the rail and sleeper masses are considered. In all cases, the parameter value range is defined from a bibliographic browsing. At the end, the paper proposes a table summarising the influence of each studied parameter on three indicators: the vehicle acceleration, the rail velocity and the soil velocity. It namely turns out that the vehicle has a serious influence on the vibration level and should be considered in prediction models.  相似文献   
86.
In this article, a new drivetrain configuration of a parallel hybrid electric vehicle is considered and a novel model-based control design strategy is given. In particular, the control design covers the speed synchronisation task during a restart of the internal combustion engine. The proposed multivariable synchronisation strategy is based on feedforward and decoupled feedback controllers. The performance and the robustness properties of the closed-loop system are illustrated by nonlinear simulation results.  相似文献   
87.
This paper presents the influence of dynamic and geometrical soil parameters on the propagation of ground vibrations induced by external loads. The proposed approach is based on a three-dimensional model, focusing on realistic excitation sources like impulse loads and moving railway vehicles. For the latter, a complete vehicle/track model is developed. The simulation is performed in time domain, offering an interesting approach, compared with classic cyclic analyses. The ground is modelled initially as an elastic homogeneous half-space and additionally as a layered half-space. First, the effect of homogeneous soil properties on ground vibration is analysed. Soil stratification is then taken into account, using various configurations. Analysis reveals that as receiver distance increases ground wave reflection in a layered ground plays an important role in the reduction of ground surface motion. This effect is magnified when the phase velocity wavelength becomes large compared with the depth of the surface layer.  相似文献   
88.
A virtual test rig is presented using a three-dimensional model of the elasto-kinematic behaviour of a vehicle. A general approach is put forward to determine the three-dimensional position of the body and the main parameters which influence the handling of the vehicle. For the design process, the variable input data are the longitudinal and lateral acceleration and the curve radius, which are defined by the user as a design goal. For the optimisation process, once the vehicle has been built, the variable input data are the travel of the four struts and the steering wheel angle, which is obtained through monitoring the vehicle. The virtual test rig has been applied to a standard vehicle and the validity of the results has been proven.  相似文献   
89.
A fault classification method is proposed which has been applied to an electric vehicle. Potential faults in the different subsystems that can affect the vehicle directional stability were collected in a failure mode and effect analysis. Similar driveline faults were grouped together if they resembled each other with respect to their influence on the vehicle dynamic behaviour. The faults were physically modelled in a simulation environment before they were induced in a detailed vehicle model under normal driving conditions. A special focus was placed on faults in the driveline of electric vehicles employing in-wheel motors of the permanent magnet type. Several failures caused by mechanical and other faults were analysed as well. The fault classification method consists of a controllability ranking developed according to the functional safety standard ISO 26262. The controllability of a fault was determined with three parameters covering the influence of the longitudinal, lateral and yaw motion of the vehicle. The simulation results were analysed and the faults were classified according to their controllability using the proposed method. It was shown that the controllability decreased specifically with increasing lateral acceleration and increasing speed. The results for the electric driveline faults show that this trend cannot be generalised for all the faults, as the controllability deteriorated for some faults during manoeuvres with low lateral acceleration and low speed. The proposed method is generic and can be applied to various other types of road vehicles and faults.  相似文献   
90.
A planar suspension system (PSS) is a novel automobile suspension system in which an individual spring–damper strut is implemented in both the vertical and longitudinal directions, respectively. The wheels in a vehicle with such a suspension system can move back and forth relative to the chassis. When a PSS vehicle experiences asymmetric road excitations, the relative longitudinal motion of wheels with respect to the chassis in two sides of the same axle are not identical, and thus the two wheels at one axle will not be aligned in the same axis. The total dynamic responses, including those of the bounce, pitch and the roll of the PSS vehicle, to the asymmetric road excitation may exhibit different characteristics from those of a conventional vehicle. This paper presents an investigation into the comprehensive dynamic behaviour of a vehicle with the PSS, in such a road condition, on both the straight and curved roads. The study was carried out using an 18 DOF full-car model incorporating a radial-spring tyre–ground contact model and a 2D tyre–ground dynamic friction model. Results demonstrate that the total dynamic behaviour of a PSS vehicle is generally comparable with that of the conventional vehicle, while PSS exhibits significant improvement in absorbing the impact forces along the longitudinal direction when compared to the conventional suspension system. The PSS vehicle is found to be more stable than the conventional vehicle in terms of the directional performance against the disturbance of the road potholes on a straight line manoeuvre, while exhibiting a very similar handling performance on a curved line.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号