全文获取类型
收费全文 | 1477篇 |
免费 | 155篇 |
专业分类
公路运输 | 546篇 |
综合类 | 376篇 |
水路运输 | 250篇 |
铁路运输 | 408篇 |
综合运输 | 52篇 |
出版年
2024年 | 37篇 |
2023年 | 26篇 |
2022年 | 43篇 |
2021年 | 63篇 |
2020年 | 64篇 |
2019年 | 50篇 |
2018年 | 56篇 |
2017年 | 65篇 |
2016年 | 67篇 |
2015年 | 62篇 |
2014年 | 72篇 |
2013年 | 56篇 |
2012年 | 236篇 |
2011年 | 88篇 |
2010年 | 59篇 |
2009年 | 56篇 |
2008年 | 63篇 |
2007年 | 108篇 |
2006年 | 81篇 |
2005年 | 68篇 |
2004年 | 63篇 |
2003年 | 37篇 |
2002年 | 18篇 |
2001年 | 16篇 |
2000年 | 13篇 |
1999年 | 7篇 |
1998年 | 9篇 |
1997年 | 6篇 |
1996年 | 2篇 |
1995年 | 5篇 |
1994年 | 4篇 |
1993年 | 7篇 |
1992年 | 2篇 |
1991年 | 12篇 |
1990年 | 4篇 |
1989年 | 5篇 |
1988年 | 1篇 |
1984年 | 1篇 |
排序方式: 共有1632条查询结果,搜索用时 0 毫秒
51.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(12):1687-1704
This paper presents a feedback-feedforward steering controller that simultaneously maintains vehicle stability at the limits of handling while minimising lateral path tracking deviation. The design begins by considering the performance of a baseline controller with a lookahead feedback scheme and a feedforward algorithm based on a nonlinear vehicle handling diagram. While this initial design exhibits desirable stability properties at the limits of handling, the steady-state path deviation increases significantly at highway speeds. Results from both linear and nonlinear analyses indicate that lateral path tracking deviations are minimised when vehicle sideslip is held tangent to the desired path at all times. Analytical results show that directly incorporating this sideslip tangency condition into the steering feedback dramatically improves lateral path tracking, but at the expense of poor closed-loop stability margins. However, incorporating the desired sideslip behaviour into the feedforward loop creates a robust steering controller capable of accurate path tracking and oversteer correction at the physical limits of tyre friction. Experimental data collected from an Audi TTS test vehicle driving at the handling limits on a full length race circuit demonstrates the improved performance of the final controller design. 相似文献
52.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(12):1935-1951
In this study, in order to examine the effects of a wheelset driving system suspension parameters on the re-adhesion performance of locomotives, the stick–slip vibration was analysed according to theoretical and simulation analysis. The decrease of the slip rate vibration amplitude improved the stability of the stick–slip vibration and the re-adhesion performance of locomotives. Increasing the longitudinal guide stiffness of the wheelset and the motor suspension stiffness were proposed as effective measures to improve the re-adhesion performance of locomotives. These results showed that the dynamic slip rate was inversely proportional to the series result of the square root of the longitudinal guide and motor suspension stiffness. The larger the motor suspension stiffness was, the smaller the required longitudinal guidance stiffness was at the same re-adhesion time once the wheel slip occurred, and vice versa. The simulation results proved that the re-adhesion time of the locomotive was approximately proportional to amplitude of the dynamic slip rate. When the stick–slip vibration occurred, the rotary and the longitudinal vibrations of the wheelset were coupled, which was confirmed by train's field tests. 相似文献
53.
54.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(5):551-574
The paper proposes a mathematical model of train–turnout interaction in the mid-frequency range (0–500 Hz). The model accounts for the effects of rail profile variation along the track and of local variation of track flexibility. The proposed approach is able to represent the condition of one wheel being simultaneously in contact with more than one rail, allowing the accurate prediction of the effect of wheels being transferred from one rail to another when passing over the switch toe and the crossing nose. Comprehensive results of train–turnout interaction during the negotiation of the main and the branch lines are presented, including the effect of wear of wheel/rail profiles and presence of track misalignment. In the final part of the paper, comparisons are performed between the results of numerical simulations and line measurements performed on two different turnouts for urban railway lines, showing a good agreement between experimental and numerical results. 相似文献
55.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(3):361-386
Passive fluidically coupled suspensions have been considered to offer a promising alternative solution to the challenging design of a vehicle suspension system. A theoretical foundation, however, has not been established for fluidically coupled suspension to facilitate its broad applications to various vehicles. The first part of this study investigates the fundamental issues related to feasibility and properties of the passive, full-vehicle interconnected, hydro-pneumatic suspension configurations using both analytical and simulation techniques. Layouts of various interconnected suspension configurations are illustrated based on two novel hydro-pneumatic suspension strut designs, both of which provide a compact design with a considerably large effective working area. A simplified measure, vehicle property index, is proposed to permit a preliminary evaluation of different interconnected suspension configurations using qualitative scaling of the bounce-, roll-, pitch- and warp-mode stiffness properties. Analytical formulations for the properties of unconnected and three selected X-coupled suspension configurations are derived, and simulation results are obtained to illustrate their relative stiffness and damping properties in the bounce, roll, pitch and warp modes. The superior design flexibility feature of the interconnected hydro-pneumatic suspension is also discussed through sensitivity analysis of a design parameter, namely the annular piston area of the strut. The results demonstrate that a full-vehicle interconnected hydro-pneumatic suspension could provide enhanced roll- and pitch-mode stiffness and damping, while retaining the soft bounce- and warp-mode properties. Such an interconnected suspension thus offers considerable potential in realising enhanced decoupling among the different suspension modes. 相似文献
56.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(4):501-526
Previous work in the railway technology laboratory at Virginia Polytechnic Institute and State University (Virginia Tech) focused on better capturing the dynamics of the friction wedge, modelled using three-dimensional rigid body dynamics with unilateral contact conditions. The current study extends the previous work to a half-bogie model treated as an application of multibody dynamics with unilateral contact to model the friction wedge interactions with the bolster and the sideframe. The half-bogie model was derived using MATLAB and functions as a three dimensional, dynamic, and multibody dynamics model comprised of four rigid bodies: a bolster, two friction wedges, and a sideframe assembly. This expanded model allows each wedge four degrees of freedom: vertical displacement, longitudinal displacement (between the bolster and sideframe), pitch (rotation around the lateral axis), and yaw (rotation around the vertical axis). The bolster and the sideframe are constrained to have only the vertical degree of freedom. The geometry of these bodies can be adjusted for various simulation scenarios. The bolster can be initialised with a pre-defined yaw (rotation around the vertical axis) and the sideframe may be initialised with a pre-defined pitch/toe (rotation around the lateral axis). The results of the multibody dynamics in half-bogie model simulation are shown in comparison with results from NUCARS®, an industry standard in train-modelling software, for similar inputs. 相似文献
57.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(8):1321-1338
In order to study the dynamic behaviours of locomotives under saturated adhesion, the stability and characteristics of stick–slip vibration are analysed using the concepts of mean and dynamic slip rates. The longitudinal vibration phenomenon of the wheelset when stick–slip occurs is put forward and its formation mechanism is made clear innovatively. The stick–slip vibration is a dynamic process between the stick and the slip states. The decreasing of mean and dynamic slip rates is conducive to its stability, which depends on the W/R adhesion damping. The torsion vibration of the driving system and the longitudinal vibration of the wheelset are coupled through the longitudinal tangential force when the wheelset alternates between the stick and the slip states. The longitudinal oscillation frequencies of the wheelset are integral multiples of the natural frequency of torsion vibration of the driving system. A train dynamic model integrated with an electromechanical and a control system is established to simulate the stick–slip vibration phenomenon under saturated adhesion to verify the theoretical analysis. The results show that increases of the longitudinal axle guidance stiffness and the motor suspension stiffness are beneficial to the stick–slip vibration stability and the locomotive's traction ability. The optimised matching of the longitudinal axle guidance stiffness and the motor suspension stiffness are helpful to avoid longitudinal resonance when the stick–slip vibration occurs. 相似文献
58.
基于地面力学理论和液压传动理论,对采用不同同步方式的单泵多马达液压行走系统的动力学问题进行了研究。建立了行走系统的动力学模型,对比了行走系统的牵引力、速度和传动效率。结果表明:在单泵多马达液压行走系统同步方式中,电子防滑技术的性能优于同步分流和自有分流技术。 相似文献
59.
三轴汽车前后轮角输入时的响应特性 总被引:5,自引:0,他引:5
本文详细推导了三轴汽车线性二自由度模型的运动微分方程,分析了汽车对前后轮角输入时的移居记响应特性。从汽车动力学的角度讨论了前后轮转应具备的比例关系。该方法同样适用于其它多轴汽车的建模分析。 相似文献
60.