首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   0篇
公路运输   3篇
综合类   1篇
水路运输   14篇
铁路运输   1篇
综合运输   52篇
  2020年   4篇
  2019年   1篇
  2018年   4篇
  2017年   5篇
  2016年   9篇
  2015年   7篇
  2014年   9篇
  2013年   4篇
  2012年   3篇
  2011年   7篇
  2008年   4篇
  2007年   2篇
  2006年   5篇
  2005年   3篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1997年   1篇
排序方式: 共有71条查询结果,搜索用时 15 毫秒
1.
Three weather sensitive models are used to explore the relationship between weather and home-based work trips within the City of Toronto, focusing on active modes of transportation. The data are restricted to non-captive commuters who have the option of selecting among five basic modes of auto driver, auto passenger, transit, bike and walk. Daily trip rates in various weather conditions are assessed. Overall, the results confirm that impact of weather on active modes of transportation is significant enough to deserve attention at the research, data collection and planning levels.  相似文献   
2.
In today’s world of volatile fuel prices and climate concerns, there is little study on the relationship between vehicle ownership patterns and attitudes toward vehicle cost (including fuel prices and feebates) and vehicle technologies. This work provides new data on ownership decisions and owner preferences under various scenarios, coupled with calibrated models to microsimulate Austin’s personal-fleet evolution.Opinion survey results suggest that most Austinites (63%, population-corrected share) support a feebate policy to favor more fuel efficient vehicles. Top purchase criteria are price, type/class, and fuel economy. Most (56%) respondents also indicated that they would consider purchasing a Plug-in Hybrid Electric Vehicle (PHEV) if it were to cost $6000 more than its conventional, gasoline-powered counterpart. And many respond strongly to signals on the external (health and climate) costs of a vehicle’s emissions, more strongly than they respond to information on fuel cost savings.Twenty five-year simulations of Austin’s household vehicle fleet suggest that, under all scenarios modeled, Austin’s vehicle usage levels (measured in total vehicle miles traveled or VMT) are predicted to increase overall, along with average vehicle ownership levels (both per household and per capita). Under a feebate, HEVs, PHEVs and Smart Cars are estimated to represent 25% of the fleet’s VMT by simulation year 25; this scenario is predicted to raise total regional VMT slightly (just 2.32%, by simulation year 25), relative to the trend scenario, while reducing CO2 emissions only slightly (by 5.62%, relative to trend). Doubling the trend-case gas price to $5/gallon is simulated to reduce the year-25 vehicle use levels by 24% and CO2 emissions by 30% (relative to trend).Two- and three-vehicle households are simulated to be the highest adopters of HEVs and PHEVs across all scenarios. The combined share of vans, pickup trucks, sport utility vehicles (SUVs), and cross-over utility vehicles (CUVs) is lowest under the feebate scenario, at 35% (versus 47% in Austin’s current household fleet). Feebate-policy receipts are forecasted to exceed rebates in each simulation year.In the longer term, gas price dynamics, tax incentives, feebates and purchase prices along with new technologies, government-industry partnerships, and more accurate information on range and recharging times (which increase customer confidence in EV technologies) should have added effects on energy dependence and greenhouse gas emissions.  相似文献   
3.
Bottom-up models, including MARKAL, MESSAGE and AIM, are widely used when analyzing the effect of greenhouse gas (GHG) abatement policies. These bottom-up models are mostly formulated as a linear programming (LP) optimization model to find both the minimal cost combination of abatement technologies and energy flows while satisfying demands. It is not unusual that the bottom-up modeling involves a great number of technical, industrial, socioeconomic and environmental constraints. Investigating representative constraints needed for analyzing GHG abatement policies, this study proposes how to implement these constraints in bottom-up modeling.  相似文献   
4.
The increase in extreme weather events due to climate change poses serious challenges to public transit systems. These events disrupt transit operations, impair service quality, increase threats to public safety, and damage infrastructure. Despite the growing risk of extreme weather and climate change, little is known about how public managers recognize, experience and address these risks. Using data from a national study of public transit agencies we investigate the types of extreme weather events transit agencies are experiencing, the associated risks, and how agencies are preparing for them. We find that while extreme events are commonly experienced by transit agencies across states and transit managers perceive increased risks from these events, most agencies rely on the traditional emergency management approach to address extreme weather ex post rather than taking a proactive approach to mitigating the adverse weather impact on transit assets and infrastructure ex ante. Managers report that a lack of access to financial resources is the greatest challenge for undertaking adaptation and preparation. We conclude with a discussion of what these findings mean for understanding organizational adaptation behavior as well as climate adaptation policy making.  相似文献   
5.
The present paper presents a data-driven method for assessing the resilience of the European passenger transport network during extreme weather events. The method aims to fill in the gap of current research efforts regarding the quantification of impacts attributed to climate change and the identification of substitutability opportunities between transport modes in case of extreme weather events (EWE). The proposed method consists of three steps concerning the probability estimation of an EWE occurring within a transportation network, the assessment of its impacts and the passengers’ flow shift between various transport modes. A mathematical formulation for the proposed data-driven method is provided and applied in an indicative European small-scale network, in order to assess the impacts of EWE on modal choice. Results are expressed in passenger differentiated flows and the paper concludes with future research steps and directions.  相似文献   
6.
We examine the various forces influencing the development and uptake of environmentally beneficial technical changes, focusing on airline technology. Within this context, we consider not only the nature of competition within the final market in which aircraft, an intermediate product, are sold, but also that of the product market itself, the commercial airline industry. The reasons for the gradual reduction in CO2 per seat per aircraft movement in aircraft design are examined in terms of the real costs of aviation fuel, changes in the nature of the supply industry, the movement towards carbon cap-trade policies, and endogenous technical progress in the technology of the industry. The latter being taken as an empirical proxy for the role market forms play in influencing the fuel efficiency of the types of aircraft used. The results support the existence of these latter forces on the demand for aircraft types, allowing for other influences that affect aircraft technology.  相似文献   
7.
Climate change (CC) potentially affects people travel behaviour, due to extreme weather conditions. This is particularly true for pedestrians, that are more exposed to weather conditions. Introducing the effect of this change in transport modelling allows to analyse and plan walking networks taking into consideration the climatic variable. The aim of this work is to develop a tool that can support planning and design of walking networks, by assessing the effects of actions oriented to increase resilience with respect to extreme weather conditions (CC adaptation).An integrated approach is used, thus combining transport and land-use planning concepts with elements of outdoor thermal comfort and network accessibility. Walking networks are analysed through centrality indexes, including thermal comfort aspects into a general cost function of links and weighted nodes. The method has been applied to the walking network inside the Campus of the University of Catania (Italy), which includes different functions and where pedestrian paths are barely used by people. Results confirm that this tool is sensitive to the variables representing weather conditions and it can measure the influence of CC adaptation measures (e.g. vegetation) on walking attitude and on the performance of the walking network.  相似文献   
8.
Emissions from aviation will continue to increase in the future, in contradiction of global climate policy objectives. Yet, airlines and airline organisations suggest that aviation will become climatically sustainable. This paper investigates this paradox by reviewing fuel-efficiency gains since the 1960s in comparison to aviation growth, and by linking these results to technology discourses, based on a two-tiered approach tracing technology-focused discourses over 20 years (1994–2013). Findings indicate that a wide range of solutions to growing emissions from aviation have been presented by industry, hyped in global media, and subsequently vanished to be replaced by new technology discourses. Redundant discourses often linger in the public domain, where they continue to be associated with industry aspirations of ‘sustainable aviation’ and ‘zero-emission flight’. The paper highlights and discusses a number of technology discourses that constitute ‘technology myths’, and the role these ‘myths’ may be playing in the enduring but flawed promise of sustainable aviation. We conclude that technology myths require policy-makers to interpret and take into account technical uncertainty, which may result in inaction that continues to delay much needed progress in climate policy for aviation.  相似文献   
9.
Air traffic has an increasing influence on climate; therefore identifying mitigation options to reduce the climate impact of aviation becomes more and more important. Aviation influences climate through several climate agents, which show different dependencies on the magnitude and location of emission and the spatial and temporal impacts. Even counteracting effects can occur. Therefore, it is important to analyse all effects with high accuracy to identify mitigation potentials. However, the uncertainties in calculating the climate impact of aviation are partly large (up to a factor of about 2). In this study, we present a methodology, based on a Monte Carlo simulation of an updated non-linear climate-chemistry response model AirClim, to integrate above mentioned uncertainties in the climate assessment of mitigation options. Since mitigation options often represent small changes in emissions, we concentrate on a more generalised approach and use exemplarily different normalised global air traffic inventories to test the methodology. These inventories are identical in total emissions but differ in the spatial emission distribution. We show that using the Monte Carlo simulation and analysing relative differences between scenarios lead to a reliable assessment of mitigation potentials. In a use case we show that the presented methodology can be used to analyse even small differences between scenarios with mean flight altitude variations.  相似文献   
10.
Climatic changes in the Northern Hemisphere have led to remarkable environmental changes in the Arctic Ocean, which is surrounded by permafrost. These changes include significant shrinking of sea-ice cover in summer, increased time between sea-ice break-up and freeze-up, and Arctic surface water freshening and warming associated with melting sea-ice, thawing permafrost, and increased runoff. These changes are commonly attributed to the greenhouse effect resulting from increased atmospheric carbon dioxide (CO2) concentration and other non-CO2 radiatively active gases (methane, nitrous oxide). The greenhouse effect should be most pronounced in the Arctic where the largest air CO2 concentrations and winter–summer variations in the world for a clean background environment were detected. However, the air–land–shelf interaction in the Arctic has a substantial impact on the composition of the overlying atmosphere; as the permafrost thaws, a significant amount of old terrestrial carbon becomes available for biogeochemical cycling and oxidation to CO2. The Arctic Ocean's role in determining regional CO2 balance has been ignored, because of its small size (only  4% of the world ocean area) and because its continuous sea-ice cover is considered to impede gaseous exchange with the atmosphere so efficiently that no global climate models include CO2 exchange over sea-ice. In this paper we show that: (1) the Arctic shelf seas (the Laptev and East-Siberian seas) may become a strong source of atmospheric CO2 because of oxidation of bio-available eroded terrestrial carbon and river transport; (2) the Chukchi Sea shelf exhibits the strong uptake of atmospheric CO2; (3) the sea-ice melt ponds and open brine channels form an important spring/summer air CO2 sink that also must be included in any Arctic regional CO2 budget. Both the direction and amount of CO2 transfer between air and sea during open water season may be different from transfer during freezing and thawing, or during winter when CO2 accumulates beneath Arctic sea-ice; (4) direct measurements beneath the sea ice gave two initial results. First, a drastic pCO2 decrease from 410 μatm to 288 μatm, which was recorded in February–March beneath the fast ice near Barrow using the SAMI-CO2 sensor, may reflect increased photosynthetic activity beneath sea-ice just after polar sunrise. Second, new measurements made in summer 2005 beneath the sea ice in the Central Basin show relatively high values of pCO2 ranging between 425 μatm and 475 μatm, values, which are larger than the mean atmospheric value in the Arctic in summertime. The sources of those high values are supposed to be: high rates of bacterial respiration, import of the Upper Halocline Water (UHW) from the Chukchi Sea (CS) where values of pCO2 range between 400 and 600 μatm, a contribution from the Lena river plume, or any combination of these sources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号