全文获取类型
收费全文 | 565篇 |
免费 | 34篇 |
专业分类
公路运输 | 198篇 |
综合类 | 137篇 |
水路运输 | 90篇 |
铁路运输 | 34篇 |
综合运输 | 140篇 |
出版年
2025年 | 4篇 |
2024年 | 17篇 |
2023年 | 11篇 |
2022年 | 10篇 |
2021年 | 15篇 |
2020年 | 6篇 |
2019年 | 20篇 |
2018年 | 32篇 |
2017年 | 30篇 |
2016年 | 46篇 |
2015年 | 49篇 |
2014年 | 40篇 |
2013年 | 62篇 |
2012年 | 103篇 |
2011年 | 12篇 |
2010年 | 14篇 |
2009年 | 21篇 |
2008年 | 10篇 |
2007年 | 25篇 |
2006年 | 18篇 |
2005年 | 12篇 |
2004年 | 12篇 |
2003年 | 5篇 |
2002年 | 10篇 |
2001年 | 7篇 |
2000年 | 2篇 |
1999年 | 2篇 |
1998年 | 1篇 |
1993年 | 1篇 |
1991年 | 1篇 |
1989年 | 1篇 |
排序方式: 共有599条查询结果,搜索用时 15 毫秒
1.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(3):421-442
This paper presents the influence of dynamic and geometrical soil parameters on the propagation of ground vibrations induced by external loads. The proposed approach is based on a three-dimensional model, focusing on realistic excitation sources like impulse loads and moving railway vehicles. For the latter, a complete vehicle/track model is developed. The simulation is performed in time domain, offering an interesting approach, compared with classic cyclic analyses. The ground is modelled initially as an elastic homogeneous half-space and additionally as a layered half-space. First, the effect of homogeneous soil properties on ground vibration is analysed. Soil stratification is then taken into account, using various configurations. Analysis reveals that as receiver distance increases ground wave reflection in a layered ground plays an important role in the reduction of ground surface motion. This effect is magnified when the phase velocity wavelength becomes large compared with the depth of the surface layer. 相似文献
2.
交通需求管理是通过削减潜在的交通需求,使路网达到供需平衡的一种有效策略。运用经济学博弈论的理论观点,分析了城市道路交通拥挤发生的原因以及相应交通需求管理方式的作用机理,从经济学的角度诠释了交通需求管理的有效性。 相似文献
3.
基于灰色关联度的客运通道运输方式竞争力研究 总被引:1,自引:0,他引:1
运输通道由多种交通方式构成,研究通道内交通方式的竞争力对乘客和运营部门具有重要意义。运用灰色关联度法,以成渝客运通道为研究对象,进行各种交通方式竞争力的演算,并通过与其他方法所研究的结论进行比较分析,证明其合理性与实用性,为相关研究提供参考。 相似文献
4.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(5):551-574
The paper proposes a mathematical model of train–turnout interaction in the mid-frequency range (0–500 Hz). The model accounts for the effects of rail profile variation along the track and of local variation of track flexibility. The proposed approach is able to represent the condition of one wheel being simultaneously in contact with more than one rail, allowing the accurate prediction of the effect of wheels being transferred from one rail to another when passing over the switch toe and the crossing nose. Comprehensive results of train–turnout interaction during the negotiation of the main and the branch lines are presented, including the effect of wear of wheel/rail profiles and presence of track misalignment. In the final part of the paper, comparisons are performed between the results of numerical simulations and line measurements performed on two different turnouts for urban railway lines, showing a good agreement between experimental and numerical results. 相似文献
5.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(2):235-261
Excitation force spectra are necessary for a realistic prediction of railway-induced ground vibration. The excitation forces cause the ground vibration and they are themselves a result of irregularities passed by the train. The methods of the related analyses – the wavenumber integration for the wave propagation in homogeneous or layered soils, the combined finite-element boundary-element method for the vehicle–track–soil interaction – have already been presented and are the base for the advanced topic of this contribution. This contribution determines excitation force spectra of railway traffic by two completely different methods. The forward analysis starts with vehicle, track and soil irregularities, which are taken from literature and axle-box measurements, calculates the vehicle–track interaction and gets theoretical force spectra as the result. The second method is a backward analysis from the measured ground vibration of railway traffic. A calculated or measured transfer function of the soil is used to determine the excitation force spectrum of the train. A number of measurements of different soils and different trains with different speeds are analysed in that way. Forward and backward analysis yield the same approximate force spectra with values around 1 kN for each axle and third of octave. 相似文献
6.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(8):1321-1338
In order to study the dynamic behaviours of locomotives under saturated adhesion, the stability and characteristics of stick–slip vibration are analysed using the concepts of mean and dynamic slip rates. The longitudinal vibration phenomenon of the wheelset when stick–slip occurs is put forward and its formation mechanism is made clear innovatively. The stick–slip vibration is a dynamic process between the stick and the slip states. The decreasing of mean and dynamic slip rates is conducive to its stability, which depends on the W/R adhesion damping. The torsion vibration of the driving system and the longitudinal vibration of the wheelset are coupled through the longitudinal tangential force when the wheelset alternates between the stick and the slip states. The longitudinal oscillation frequencies of the wheelset are integral multiples of the natural frequency of torsion vibration of the driving system. A train dynamic model integrated with an electromechanical and a control system is established to simulate the stick–slip vibration phenomenon under saturated adhesion to verify the theoretical analysis. The results show that increases of the longitudinal axle guidance stiffness and the motor suspension stiffness are beneficial to the stick–slip vibration stability and the locomotive's traction ability. The optimised matching of the longitudinal axle guidance stiffness and the motor suspension stiffness are helpful to avoid longitudinal resonance when the stick–slip vibration occurs. 相似文献
7.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(2):299-321
Accurately estimating the coefficient of friction (CoF) is essential in modelling railroad dynamics, reducing maintenance costs, and increasing safety in rail operations. The typical assumption of a constant CoF is widely used in theoretical studies; however, it has been noticed that the CoF is not constant, but rather depends on various dynamic parameters and instantaneous conditions. In this paper, we present a newly developed three-dimensional nonlinear CoF model for the dry rail condition and test the CoF variation using this model with estimated dynamic parameters. The wheel–rail is modelled as a mass–spring–damper system to simulate the basic wheel–rail dynamics. Although relatively simple, this model is considered sufficient for the purpose of this study. Simulations are performed at a train speed of 20 m/s using rail roughness as an excitation source. The model captures the CoF extremes and illustrates its nonlinear behaviour and instantaneous dependence on several structural and dynamic parameters. 相似文献
8.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(4):619-639
A study is performed on the influence of some typical railway vehicle and track parameters on the level of ground vibrations induced in the neighbourhood. The results are obtained from a previously validated simulation framework considering in a first step the vehicle/track subsystem and, in a second step, the response of the soil to the forces resulting from the first analysis. The vehicle is reduced to a simple vertical 3-dof model, corresponding to the superposition of the wheelset, the bogie and the car body. The rail is modelled as a succession of beam elements elastically supported by the sleepers, lying themselves on a flexible foundation representing the ballast and the subgrade. The connection between the wheels and the rails is realised through a non-linear Hertzian contact. The soil motion is obtained from a finite/infinite element model. The investigated vehicle parameters are its type (urban, high speed, freight, etc.) and its speed. For the track, the rail flexural stiffness, the railpad stiffness, the spacing between sleepers and the rail and sleeper masses are considered. In all cases, the parameter value range is defined from a bibliographic browsing. At the end, the paper proposes a table summarising the influence of each studied parameter on three indicators: the vehicle acceleration, the rail velocity and the soil velocity. It namely turns out that the vehicle has a serious influence on the vibration level and should be considered in prediction models. 相似文献
9.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(11):1517-1540
Proper rail geometry in the crossing part is essential for reducing damage on the nose rail. To improve the dynamic behaviour of turnout crossings, a numerical optimisation approach to minimise rolling contact fatigue (RCF) damage and wear in the crossing panel by varying the nose rail shape is presented in the paper. The rail geometry is parameterised by defining several control cross-sections along the crossing. The dynamic vehicle–turnout interaction as a function of crossing geometry is analysed using the VI-Rail package. In formulation of the optimisation problem a combined weighted objective function is used consisting of the normal contact pressure and the energy dissipation along the crossing responsible for RCF and wear, respectively. The multi-objective optimisation problem is solved by adapting the multipoint approximation method and a number of compromised solutions have been found for various sets of weight coefficients. Dynamic behaviour of the crossing has been significantly improved after optimisations. Comparing with the reference design, the heights of the nose rail are notably increased in the beginning of the crossing; the nominal thicknesses of the nose rail are also changed. All the optimum designs work well under different track conditions. 相似文献
10.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(12):1622-1641
Wheel set flange derailment criteria for railway vehicles are derived and the influence of wheel–rail contact parameters is studied. An indirect method for wheel–rail force measurement based on these derailment evaluation criteria is proposed. Laboratory tests for the calibration of strain–force devices on the bearing box are carried out to determine the relationship between the applied force and the measured strain. The simulation package, SIMPACK, is used to develop a passenger car model to generate wheel–rail forces and vibration signals. Different cases are considered in this model to provide an accurate validation of the identified wheel–rail forces. A feasibility test is conducted in the Beijing Loop test line using a passenger car equipped with a set of strain gauges on the wheel set. The comparison of the force time history applied to the instrumented wheel set and that obtained using the indirect method is presented. 相似文献