全文获取类型
收费全文 | 888篇 |
免费 | 76篇 |
专业分类
公路运输 | 253篇 |
综合类 | 217篇 |
水路运输 | 326篇 |
铁路运输 | 132篇 |
综合运输 | 36篇 |
出版年
2024年 | 5篇 |
2023年 | 15篇 |
2022年 | 29篇 |
2021年 | 47篇 |
2020年 | 29篇 |
2019年 | 30篇 |
2018年 | 28篇 |
2017年 | 35篇 |
2016年 | 36篇 |
2015年 | 45篇 |
2014年 | 49篇 |
2013年 | 57篇 |
2012年 | 100篇 |
2011年 | 74篇 |
2010年 | 46篇 |
2009年 | 49篇 |
2008年 | 39篇 |
2007年 | 55篇 |
2006年 | 63篇 |
2005年 | 32篇 |
2004年 | 29篇 |
2003年 | 16篇 |
2002年 | 6篇 |
2001年 | 11篇 |
2000年 | 9篇 |
1999年 | 4篇 |
1998年 | 3篇 |
1997年 | 6篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1994年 | 2篇 |
1993年 | 4篇 |
1992年 | 4篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1989年 | 2篇 |
排序方式: 共有964条查询结果,搜索用时 15 毫秒
21.
In this paper, we explore the diurnal dynamics of joint activity participation in a small city in Pennsylvania, USA, using behavioral data and an inventory of business establishments. We account for the variation caused by the collective impact of social, temporal and spatial choices of individuals to produce predicted space–time visualizations of activity participation. The focus is on how social contexts of an activity impact the temporal and spatial decisions regarding the activity locations and how this impact varies depending on activity types. A comparison across activity types and social interaction types is made among spatial patterns during a day. The CentreSIM dataset, which is a household-based activity diary survey collected in Centre County (Pennsylvania, USA) in 2003, provides very detailed social interaction information enabling the analysis of social, spatial and temporal aspects of activity participation. In this paper we use this information to develop a spatio-temporal interpolation method and demonstration based on kriging. In this way, we extract the dynamic social taxonomy of places from the behavioral information in the dataset and suggest how urban and transportation models can be informed from the dynamics of places by observing “what is taking place” (activities being pursued in the context of this paper) combined with “what exists” (business establishments) or “what is available” (businesses that are open). The method here can also be used to improve the design of urban environments (e.g., filling gaps in desired activity locations), manage specific places (e.g., extending the opening and closing times of businesses), study transportation policies that are sensitive to time of day (e.g., pricing of parking to discourage crowding and traffic congestion), and modeling of spatio-temporal decisions of social activities in travel demand models (e.g., to guide the development of model specification and representation of the space in which behavioral models are applied). 相似文献
22.
23.
从查阅到的文献可以看到,在驾驶员逐日路径选择行为及网络交通流演化的研究中,均假定驾驶员第1天对路径的理解行程时间相同,也即初始条件中没有考虑驾驶员的个体差异性。首先,对初始条件和驾驶员逐日路径选择过程建模,在2条平行路径的简单路网中,运用Agent仿真方法模拟了不同初始条件下驾驶员逐日路径选择过程。结果表明:路网达到平衡所需的时间与驾驶员对历史信息的依赖程度显著相关,而与第1天驾驶员对路径行程时间理解的相关差异性不显著;路网平衡和用户平衡的差别与两者均显著相关。虽然在不同情况下路网均能够达到近似的用户平衡状态,但是平衡时驾驶员对2条路径的理解行程时间存在较大差异。 相似文献
24.
25.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(3):247-258
Dynamic train–track interaction is more complex in railway turnouts (switches and crossings) than that in ordinary tangent or curved tracks. Multiple contacts between wheel and rail are common, and severe impact loads with broad frequency contents are induced, when nominal wheel–rail contact conditions are disturbed because of the continuous variation in rail profiles and the discontinuities in the crossing panel. The absence of transition curves at the entry and exit of the turnout, and the cant deficiency, leads to large wheel–rail contact forces and passenger discomfort when the train is switching into the turnout track. Two alternative multibody system (MBS) models of dynamic interaction between train and a standard turnout design are developed. The first model is derived using a commercial MBS software. The second model is based on a multibody dynamics formulation, which may account for the structural flexibility of train and track components (based on finite element models and coordinate reduction methods). The variation in rail profile is accounted for by sampling the cross-section of each rail at several positions along the turnout. Contact between the back of the wheel flange and the check rail, when the wheelset is steered through the crossing, is considered. Good agreement in results from the two models is observed when the track model is taken as rigid. 相似文献
26.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(5):355-384
To study the problems associated with vibration control of train–bridge–track systems a mathematical model with the capability of representing supplementary vibrational control devices is proposed. The train system is assumed as rigid bodies supported on double-deck suspension mechanism with semi-active features. The bridge system is modeled using the modal approach. Vibration control for bridge responses is provided by tuned mass dampers. A non-classical incremental Eigen analysis is proposed to trace the system characteristics across the time. In an example, the capability of the proposed model in investigating the vibration control prospects of a bridge–train system is shown. The results indicate the effectiveness of active suspension mechanism in reducing train's body movements, particularly the pitching angle and the vertical accelerations. Accordingly, the results also verify the potential of TMD devices in reducing the bridge responses at resonance motions. 相似文献
27.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(5):551-574
The paper proposes a mathematical model of train–turnout interaction in the mid-frequency range (0–500 Hz). The model accounts for the effects of rail profile variation along the track and of local variation of track flexibility. The proposed approach is able to represent the condition of one wheel being simultaneously in contact with more than one rail, allowing the accurate prediction of the effect of wheels being transferred from one rail to another when passing over the switch toe and the crossing nose. Comprehensive results of train–turnout interaction during the negotiation of the main and the branch lines are presented, including the effect of wear of wheel/rail profiles and presence of track misalignment. In the final part of the paper, comparisons are performed between the results of numerical simulations and line measurements performed on two different turnouts for urban railway lines, showing a good agreement between experimental and numerical results. 相似文献
28.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(2):235-261
Excitation force spectra are necessary for a realistic prediction of railway-induced ground vibration. The excitation forces cause the ground vibration and they are themselves a result of irregularities passed by the train. The methods of the related analyses – the wavenumber integration for the wave propagation in homogeneous or layered soils, the combined finite-element boundary-element method for the vehicle–track–soil interaction – have already been presented and are the base for the advanced topic of this contribution. This contribution determines excitation force spectra of railway traffic by two completely different methods. The forward analysis starts with vehicle, track and soil irregularities, which are taken from literature and axle-box measurements, calculates the vehicle–track interaction and gets theoretical force spectra as the result. The second method is a backward analysis from the measured ground vibration of railway traffic. A calculated or measured transfer function of the soil is used to determine the excitation force spectrum of the train. A number of measurements of different soils and different trains with different speeds are analysed in that way. Forward and backward analysis yield the same approximate force spectra with values around 1 kN for each axle and third of octave. 相似文献
29.
Parameters optimisation of a vehicle suspension system using a particle swarm optimisation algorithm
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(4):449-474
The purpose of this paper is to determine the lumped suspension parameters that minimise a multi-objective function in a vehicle model under different standard PSD road profiles. This optimisation tries to meet the rms vertical acceleration weighted limits for human sensitivity curves from ISO 2631 [ISO-2631: guide for evaluation of human exposure to whole-body vibration. Europe; 1997] at the driver's seat, the road holding capability and the suspension working space. The vehicle is modelled in the frequency domain using eight degrees of freedom under a random road profile. The particle swarm optimisation and sequential quadratic programming algorithms are used to obtain the suspension optimal parameters in different road profile and vehicle velocity conditions. A sensitivity analysis is performed using the obtained results and, in Class G road profile, the seat damping has the major influence on the minimisation of the multi-objective function. The influence of vehicle parameters in vibration attenuation is analysed and it is concluded that the front suspension stiffness should be less stiff than the rear ones when the driver's seat relative position is located forward the centre of gravity of the car body. Graphs and tables for the behaviour of suspension parameters related to road classes, used algorithms and velocities are presented to illustrate the results. In Class A road profile it was possible to find optimal parameters within the boundaries of the design variables that resulted in acceptable values for the comfort, road holding and suspension working space. 相似文献
30.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(11):1517-1540
Proper rail geometry in the crossing part is essential for reducing damage on the nose rail. To improve the dynamic behaviour of turnout crossings, a numerical optimisation approach to minimise rolling contact fatigue (RCF) damage and wear in the crossing panel by varying the nose rail shape is presented in the paper. The rail geometry is parameterised by defining several control cross-sections along the crossing. The dynamic vehicle–turnout interaction as a function of crossing geometry is analysed using the VI-Rail package. In formulation of the optimisation problem a combined weighted objective function is used consisting of the normal contact pressure and the energy dissipation along the crossing responsible for RCF and wear, respectively. The multi-objective optimisation problem is solved by adapting the multipoint approximation method and a number of compromised solutions have been found for various sets of weight coefficients. Dynamic behaviour of the crossing has been significantly improved after optimisations. Comparing with the reference design, the heights of the nose rail are notably increased in the beginning of the crossing; the nominal thicknesses of the nose rail are also changed. All the optimum designs work well under different track conditions. 相似文献