全文获取类型
收费全文 | 696篇 |
免费 | 38篇 |
专业分类
公路运输 | 359篇 |
综合类 | 36篇 |
水路运输 | 38篇 |
铁路运输 | 135篇 |
综合运输 | 166篇 |
出版年
2025年 | 2篇 |
2024年 | 31篇 |
2023年 | 16篇 |
2022年 | 42篇 |
2021年 | 32篇 |
2020年 | 57篇 |
2019年 | 11篇 |
2018年 | 46篇 |
2017年 | 26篇 |
2016年 | 38篇 |
2015年 | 36篇 |
2014年 | 47篇 |
2013年 | 19篇 |
2012年 | 37篇 |
2011年 | 43篇 |
2010年 | 33篇 |
2009年 | 28篇 |
2008年 | 14篇 |
2007年 | 30篇 |
2006年 | 31篇 |
2005年 | 34篇 |
2004年 | 24篇 |
2003年 | 23篇 |
2002年 | 7篇 |
2001年 | 7篇 |
2000年 | 3篇 |
1999年 | 1篇 |
1998年 | 4篇 |
1997年 | 3篇 |
1996年 | 1篇 |
1995年 | 2篇 |
1994年 | 2篇 |
1993年 | 4篇 |
排序方式: 共有734条查询结果,搜索用时 0 毫秒
41.
轨道交通电工电子设备的绝缘配合(上) 总被引:1,自引:0,他引:1
从绝缘配合的基本概念及TBff3251.1—2010《轨道交通绝缘配合第1部分:基本要求电工电子设备的电气间隙和爬电距离》的制定背景出发,阐述确定绝缘配合的因素,包括额定绝缘电压、过电康类别、污染等级、绝缘材料及海拔等,以及获得所需电气间隙和爬电距离的步骤,说明过电压防护仿真的作用和参数,解释绝缘试验中的实际问题,以便理解和执行TB/T3251.1—2010。 相似文献
42.
43.
解读《电加热道岔融雪系统设备》与《客运专线铁路信号产品暂行技术条件汇编——电加热道岔融雪系统设备》标准的共性部分,并从编制背景、标准定位、技术要求、试验方法和检验规则等方面,分析两者之间的差异性. 相似文献
44.
Fuel-switching personal transportation from gasoline to electricity offers many advantages, including lower noise, zero local air pollution, and petroleum-independence. But alleviations of greenhouse gas (GHG) emissions are more nuanced, due to many factors, including the car’s battery range. We use GPS-based trip data to determine use type-specific, GHG-optimized ranges. The dataset comprises 412 cars and 384,869 individual trips in Ann Arbor, Michigan, USA. We use previously developed algorithms to determine driver types, such as using the car to commute or not. Calibrating an existing life cycle GHG model to a forecast, low-carbon grid for Ann Arbor, we find that the optimum range varies not only with the drive train architecture (plugin-hybrid versus battery-only) and charging technology (fast versus slow) but also with the driver type. Across the 108 scenarios we investigated, the range that yields lowest GHG varies from 65 km (55+ year old drivers, ultrafast charging, plugin-hybrid) to 158 km (16–34 year old drivers, overnight charging, battery-only). The optimum GHG reduction that electric cars offer – here conservatively measured versus gasoline-only hybrid cars – is fairly stable, between 29% (16–34 year old drivers, overnight charging, battery-only) and 46% (commuters, ultrafast charging, plugin-hybrid). The electrification of total distances is between 66% and 86%. However, if cars do not have the optimum range, these metrics drop substantially. We conclude that matching the range to drivers’ typical trip distances, charging technology, and drivetrain is a crucial pre-requisite for electric vehicles to achieve their highest potential to reduce GHG emissions in personal transportation. 相似文献
45.
A potential solution to reduce greenhouse gas (GHG) emissions in the transport sector is the use of alternative fuel vehicles (AFV). As global GHG emission standards have been in place for passenger cars for several years, infrastructure modelling for new AFV is an established topic. However, as the regulatory focus shifts towards heavy-duty vehicles (HDV), the market diffusion of AFV-HDV will increase as will planning the relevant AFV infrastructure for HDV. Existing modelling approaches need to be adapted, because the energy demand per individual refill increases significantly for HDV and there are regulatory as well as technical limitations for alternative fuel station (AFS) capacities at the same time. While the current research takes capacity restrictions for single stations into account, capacity limits for locations (i.e. nodes) – the places where refuelling stations are built such as highway entries, exits or intersections – are not yet considered. We extend existing models in this respect and introduce an optimal development for AFS considering (station) location capacity restrictions. The proposed method is applied to a case study of a potential fuel cell heavy-duty vehicle AFS network. We find that the location capacity limit has a major impact on the number of stations required, station utilization and station portfolio variety. 相似文献
46.
Battery-only electric vehicles (BEVs) generally offer better air quality through lowered emissions, along with energy savings and security. The issue of long-duration battery charging makes charging-station placement and design key for BEV adoption rates. This work uses genetic algorithms to identify profit-maximizing station placement and design details, with applications that reflect the costs of installing, operating, and maintaining service equipment, including land acquisition. Fast electric vehicle charging stations (EVCSs) are placed across a congested city's network subject to stochastic demand for charging under a user-equilibrium traffic assignment. BEV users’ station choices consider endogenously determined travel times and on-site charging queues. The model allows for congested-travel and congested-station feedback into travelers’ route choices under elastic demand and BEV owners’ station choices, as well as charging price elasticity for BEV charging users.Boston-network results suggest that EVCSs should locate mostly along major highways, which may be a common finding for other metro settings. If 10% of current EV owners seek to charge en route, a user fee of $6 for a 30-min charging session is not enough for station profitability under a 5-year time horizon in this region. However, $10 per BEV charging delivers a 5-year profit of $0.82 million, and 11 cords across 3 stations are enough to accommodate a near-term charging demand in this Boston-area application. Shorter charging sessions, higher fees, and/or allowing for more cords per site also increase profits generally, everything else constant. Power-grid and station upgrades should keep pace with demand, to maximize profits over time, and avoid on-site congestion. 相似文献
47.
This paper presents the results of a preference survey of 1545 respondents’ willingness to purchase electric vehicles (EVs) in Philadelphia. We pay particular attention to respondents’ willingness to pay for convenient charging systems and parking spaces. If the value of dedicated parking substantially outweighs the value of convenient charging systems, residential-based on-street charging systems are unlikely to ever be politically palatable. As expected, respondents are generally willing to pay for longer range, shorter charging times, lower operating costs, and shorter parking search times. For a typical respondent, a $100 per month parking charge decreases the odds of purchasing an EV by around 65%. Across mixed logit and latent class models, we find substantial variation in the willingness to pay for EV range, charge time, and ease of parking. Of note, we find two primary classes of respondents with substantially different EV preferences. The first class tends to live in multifamily housing units in central parts of the city and puts a high value on parking search time and the availability of on-street charging stations. The second class, whose members are likelier to be married, wealthy, conservative, and residing in single-family homes in more distant neighborhoods, are willing to pay more for EV range and charge time, but less for parking than the first group. They are also much likelier to consider purchasing EVs at all. We recommend that future research into EV adoption incorporate neighborhood-level features, like parking availability and average trip distances, which vary by neighborhood and almost certainly influence EV adoption. 相似文献
48.
Previous research has shown that electric vehicle (EV) users could behave differently compared to internal combustion engine vehicle (ICEV) drivers due to their consciousness or practices of eco-driving, but very limited research has fully investigated this assumption. This research explores this topic through investigating EV drivers’ eco-driving behaviors and motivations. We first conducted a questionnaire survey on EV drivers’ driving behavior and some hypothetical decisions of their driving. It indicates various characteristics between EV and ICEV commuters, including self-reported daily driving habits, preferences of route choices, tradeoff between travel time and energy saving, and adoption of in-vehicle display (IVD) technologies. Then, through statistical analysis with Fisher’s exact test and Mann-Whitney U test, this research reveals that, compared to ICEV drivers, EV drivers possess significantly calmer driving maneuvers and more fuel-efficient driving habits such as trip chaining. The survey data also show that EV drivers are much more willing to save energy in compensation of travel time. Furthermore, the survey data indicate that EV drivers are more willing to adopt eco-friendly IVD technologies. All these findings are expected to improve the understanding of some unique behavior found in EV drivers. 相似文献
49.
The focus of this study is to jointly design charging stations and photovoltaic (PV) power plants with time-dependent charging fee, to improve the management of the coupled transportation and power systems. We first propose an efficient and extended label-setting algorithm to solve the EV joint routing and charging problem that considers recharging amount choices at different stations and loop movement cases. Then, a variational inequality problem is formulated to model the equilibrium of EV traffic on transportation networks, and an optimal power flow model is proposed to model the power network flow with PV power plants and optimally serve the EV charging requirements. Based on the above models for describing system states, we then formulate a model to simultaneously design charging stations, PV plants, and time-dependent charging fee. A surrogate-based optimization (SBO) algorithm is adopted to solve the model. Numerical examples demonstrate that the proposed SBO algorithm performs well. Additionally, important insights concerning the infrastructure design and price management of the coupled transportation and power networks are derived accordingly. 相似文献
50.
The majority of previous studies examining life cycle greenhouse gas (LCGHG) emissions of battery electric vehicles (BEVs) have focused on efficiency-oriented vehicle designs with limited battery capacities. However, two dominant trends in the US BEV market make these studies increasingly obsolete: sales show significant increases in battery capacity and attendant range and are increasingly dominated by large luxury or high-performance vehicles. In addition, an era of new use and ownership models may mean significant changes to vehicle utilization, and the carbon intensity of electricity is expected to decrease. Thus, the question is whether these trends significantly alter our expectations of future BEV LCGHG emissions.To answer this question, three archetypal vehicle designs for the year 2025 along with scenarios for increased range and different use models are simulated in an LCGHG model: an efficiency-oriented compact vehicle; a high performance luxury sedan; and a luxury sport utility vehicle. While production emissions are less than 10% of LCGHG emissions for today’s gasoline vehicles, they account for about 40% for a BEV, and as much as two-thirds of a future BEV operated on a primarily renewable grid. Larger battery systems and low utilization do not outweigh expected reductions in emissions from electricity used for vehicle charging. These trends could be exacerbated by increasing BEV market shares for larger vehicles. However, larger battery systems could reduce per-mile emissions of BEVs in high mileage applications, like on-demand ride sharing or shared vehicle fleets, meaning that trends in use patterns may countervail those in BEV design. 相似文献