首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   297篇
  免费   0篇
公路运输   154篇
综合类   1篇
水路运输   39篇
铁路运输   2篇
综合运输   101篇
  2023年   4篇
  2021年   6篇
  2020年   2篇
  2019年   12篇
  2018年   21篇
  2017年   23篇
  2016年   37篇
  2015年   38篇
  2014年   21篇
  2013年   42篇
  2012年   89篇
  2010年   1篇
  2009年   1篇
排序方式: 共有297条查询结果,搜索用时 15 毫秒
101.
In the present paper, the method for calculation of the dynamic pantograph–catenary interaction developed by the Royal Institute of Technology and the Swedish National Rail/Road administration (Trafikverket) is described and the results of the benchmark exercise are discussed. The method is based on the commercial Finite Element software ANSYS. The geometry of the catenary and pantograph is defined in a pre-processor, BARTRAD, developed by Trafikverket, and is automatically translated into an ANSYS model. Basically all types of catenary systems could be handled as well as different types of non-linearity. There are both 2D and 3D versions of the code existing. The results achieved in this first stage of the benchmark are well in line with the results from the other partners in the benchmark study  相似文献   
102.
103.
Wheel–rail contact calculations are essential for simulating railway vehicle dynamic behavior. Currently, these simulations usually use the Hertz contact theory to calculate normal forces and Kalker's ‘FASTSIM’ program to evaluate tangential stresses. Since 1996, new methods called semi-Hertzian have appeared: 5 Kik, W. and Piotrowski, J. A fast approximate method to calculate normal load at contact between wheel and rail and creep forces during rolling. Paper presented at the 2nd Mini-conference on Contact Mechanics and Wear of Rail/Wheel Systems. July29–31, Budapest.  [Google Scholar] 7 Ayasse, J. B., Chollet, H. and Maupu, J. L. 2000. Paramètres caractéristiques du contact roue-rail. Rapport de Recherche INRETS n225, ISSN 0768–9756 (in French) [Google Scholar] (STRIPES). These methods attempt to estimate the non-elliptical contact patches with a discrete extension of the Hertz theory. As a continuation of 2 Ayasse, J. B and Chollet, H. 2005. Determination of the wheel–rail contact patch in semi-Hertzian conditions. Vehicle System Dynamics, 43(3) [Google Scholar], a validation of the STRIPES method for normal problem computing on three test cases is proposed in this article. The test cases do not fulfill the hypothesis required for the Hertz theory. Then, the Kalker's FASTSIM algorithm is adapted to STRIPES patch calculus to perform tangential forces computation. This adaptation is assessed using Kalker's CONTACT algorithm.  相似文献   
104.
In recent years the application of driver steering models has extended from the off-line simulation environment to autonomous vehicles research and the support of driver assistance systems. For these new environments there is a need for the model to be adaptive in real time, so the supporting vehicle systems can react to changes in the driver, their driving style, mood and skill. This paper provides a novel means to meet these needs by combining a simple driver model with a single-track vehicle handling model in a parameter estimating filter – in this case, an unscented Kalman filter. Although the steering model is simple, a motion simulator study shows it is capable of characterising a range of driving styles and may also indicate the level of skill of the driver. The resulting filter is also efficient – comfortably operating faster than real time – and it requires only steer and speed measurements from the vehicle in addition to the reference path. Adaptation of the steer model parameters is demonstrated along with robustness of the filter to errors in initial conditions, using data from five test drivers in vehicle tests carried out on the open road.

Abbreviations: ADAS: advanced driver assistance systems; CG: centre of gravity; CAN: controller area network; EKF: extended Kalman filter; GPS: global positioning system; UKF: unscented Kalman filter  相似文献   

105.
Scaled roller rigs used for railway applications play a fundamental role in the development of new technologies and new devices, combining the hardware in the loop (HIL) benefits with the reduction of the economic investments. The main problem of the scaled roller rig with respect to the full scale ones is the improved complexity due to the scaling factors. For this reason, before building the test rig, the development of a software model of the HIL system can be useful to analyse the system behaviour in different operative conditions. One has to consider the multi-body behaviour of the scaled roller rig, the controller and the model of the virtual vehicle, whose dynamics has to be reproduced on the rig. The main purpose of this work is the development of a complete model that satisfies the previous requirements and in particular the performance analysis of the controller and of the dynamical behaviour of the scaled roller rig when some disturbances are simulated with low adhesion conditions. Since the scaled roller rig will be used to simulate degraded adhesion conditions, accurate and realistic wheel–roller contact model also has to be included in the model. The contact model consists of two parts: the contact point detection and the adhesion model. The first part is based on a numerical method described in some previous studies for the wheel–rail case and modified to simulate the three-dimensional contact between revolute surfaces (wheel–roller). The second part consists in the evaluation of the contact forces by means of the Hertz theory for the normal problem and the Kalker theory for the tangential problem. Some numerical tests were performed, in particular low adhesion conditions were simulated, and bogie hunting and dynamical imbalance of the wheelsets were introduced. The tests were devoted to verify the robustness of control system with respect to some of the more frequent disturbances that may influence the roller rig dynamics. In particular we verified that the wheelset imbalance could significantly influence system performance, and to reduce the effect of this disturbance a multistate filter was designed.  相似文献   
106.
A method is described which is an extension of rolling contact models with respect to plasticity. This new method, which is an extension of the STRIPES semi-Hertzian (SH) model, has been implemented in a multi-body-system (MBS) package and does not result in a longer execution time than the STRIPES SH model [J.B. Ayasse and H. Chollet, Determination of the wheel–rail contact patch in semi-Hertzian conditions, Veh. Syst. Dyn. 43(3) (2005), pp. 161–172]. High speed of computation is obtained by some hypotheses about the plastic law, the shape of stresses, the locus of the maximum stress and the slip. Plasticity does not change the vehicle behaviour but there is a need for an extension of rolling contact models with respect to plasticity as far as fatigue analysis of rail is concerned: rolling contact fatigue may be addressed via the finite element method (FEM) including material non-linearities, where loads are the contact stresses provided by the post-processing of MBS results [K. Dang Van, M.H. Maitournam, Z. Moumni, and F. Roger, A comprehensive approach for modeling fatigue and fracture of rails, Eng. Fract. Mech. 76 (2009), pp. 2626–2636]. In STRIPES, like in other MBS models, contact stresses may exceed the plastic yield criterion, leading to wrong results in the subsequent FEM analysis. With the proposed method, contact stresses are kept consistent with a perfect plastic law, avoiding these problems. The method is benchmarked versus non-linear FEM in Hertzian geometries. As a consequence of taking plasticity into account, contact patch area is bigger than the elastic one. In accordance with FEM results, a different ellipse aspect ratio than the one predicted by Hertz theory was also found and finally pressure does not exceed the threshold prescribed by the plastic law. The method also provides more exact results with non-Hertzian geometries. The new approach is finally compared with non-linear FEM in a tangent case with a unidirectional load and a complete slip: when plasticity is taken into account, and for large adhesion values, friction forces have an influence on the size of the contact patch. The proposed approach enables also to assess extensively the level of plasticity along a track through an indicator associated with a given yield stress.  相似文献   
107.
108.
Wheel–rail interaction is one of the most important research topics in railway engineering. It involves track impact response, track vibration and track safety. Track structure failures caused by wheel–rail impact forces can lead to significant economic loss for track owners through damage to rails and to the sleepers beneath. Wheel–rail impact forces occur because of imperfections in the wheels or rails such as wheel flats, irregular wheel profiles, rail corrugations and differences in the heights of rails connected at a welded joint. A wheel flat can cause a large dynamic impact force as well as a forced vibration with a high frequency, which can cause damage to the track structure. In the present work, a three-dimensional finite element (FE) model for the impact analysis induced by the wheel flat is developed by the use of the FE analysis (FEA) software package ANSYS and validated by another validated simulation. The effect of wheel flats on impact forces is thoroughly investigated. It is found that the presence of a wheel flat will significantly increase the dynamic impact force on both rail and sleeper. The impact force will monotonically increase with the size of wheel flats. The relationships between the impact force and the wheel flat size are explored from this FEA and they are important for track engineers to improve their understanding of the design and maintenance of the track system.  相似文献   
109.
The performance of a railway turnout (switch and crossing) is influenced by a large number of input parameters of the complex train–turnout system. To reach a robust design that performs well for different traffic situations, random distributions (scatter) of these inputs need to be accounted for in the design process. Stochastic analysis methods are integrated with a simulation model of the dynamic interaction between train and turnout. For a given nominal layout of the turnout, using design of experiments methodology and a two-level fractional factorial screening design, four parameters (axle load, wheel–rail friction coefficient, and wheel and rail profiles) are identified to be the most significant. These parameters are further investigated using a three-level full factorial design and stochastic analysis. The random distributions of transverse wheel profile and set of transverse rail profiles along the switch panel are accounted for by the Karhunen–Loève expansion technique. The influence of the random distributions of the input parameters on the statistical outputs of wheel–rail contact forces, wear and rolling contact fatigue is assessed using Latin hypercube sampling to generate a number of stochastic load realizations.  相似文献   
110.
This article presents a method of assessing the economic impacts of ports at both regional level and national level, through application of input–output analysis. To this end, a methodology for data collection is proposed, which combines a top-down with a bottom-up approach which should help in surpassing some of the difficulties commonly faced in port economic impact studies. The presented methodology allows port planners and policymakers to assess the economic significance and geographic reach of port investments. This study considers the economic impacts of the port cluster and the socio-economic significance of port user industries. The several layers of the analysis are kept separate to allow a better grasp of direct and indirect impacts. The proposed methodology is demonstrated in a study of the Port of Lisbon, which confirms the significance of this port to the Portuguese economy, and also demonstrates that the influence of the Port of Lisbon is mostly limited to an area in close proximity to the port. Therefore, results suggest that investments for the development of logistic infrastructures associated with the port should concentrate in the immediate hinterland of the port.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号