首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   5篇
公路运输   43篇
综合类   32篇
水路运输   4篇
铁路运输   7篇
综合运输   64篇
  2022年   1篇
  2021年   4篇
  2020年   5篇
  2019年   3篇
  2018年   8篇
  2017年   8篇
  2016年   9篇
  2015年   11篇
  2014年   23篇
  2013年   8篇
  2012年   11篇
  2011年   8篇
  2010年   5篇
  2009年   10篇
  2008年   6篇
  2007年   11篇
  2006年   8篇
  2005年   6篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
排序方式: 共有150条查询结果,搜索用时 15 毫秒
121.
The objective of this work is to determine, by means of simulation and experiments, the effect of pedestrian traffic management in the boarding and alighting time of passengers at metro stations. Studies were made by means of a pedestrian traffic microsimulator (LEGION Studio) and experiments at the Human Dynamic Laboratory (HDL) of Universidad de los Andes in Santiago de Chile, to obtain criteria for the pedestrian traffic management on the platform and doors of metro cars. The methodology consists of building a boarding/alighting hall of a metro car and the relevant portion of the platform in front of the hall. The simulation scenarios included the location of the vertical handrail in the hall of the car, delimitation of a keep out zone in front of the doors and the use of differentiated doors for boarding and alighting. The results of the simulation and laboratory experiments are expressed in Pedestrian Level of Service (LOS), Passenger Service Time (PST), passenger density on the vehicle and platform, and passenger dissatisfaction. Both, the simulation results and laboratory experiments allow us to give some recommendations for the pedestrian traffic management in metro systems.  相似文献   
122.
This study proposes a potential-based dynamic pedestrian flow assignment model to optimize the evacuation time needed for all pedestrians to leave an indoor or outdoor area with internal obstacles and multiple exits, e.g., railway station, air terminal, plaza, and park. In the model, the dynamic loading of pedestrian flows on a two-dimensional space is formulated by a cell transmission model, the movement of crowds is driven by space potential, and the optimization of evacuation time is solved by a proportional swapping process. In this way, the proposed model can be applied to not only efficiently optimize the evacuation process of a crowd with large scale but also recognize local congestion dynamics during crowd evacuation. Finally, a set of numerical examples are presented to show the proposed model’s effectiveness for optimizing crowd evacuation process and its application to design a class of variable guide sign systems.  相似文献   
123.
This paper investigates how recurrent parking demand can be managed by dynamic parking pricing and information provision in the morning commute. Travelers are aware of time-varying pricing information and time-varying expected occupancy, through either their day-to-day experience or online information provision, to make their recurrent parking choices. We first formulate the parking choices under the User Equilibrium (UE) conditions using the Variational Inequality (VI) approach. More importantly, the System Optimal (SO) parking flow pattern and SO parking prices are also derived and solved efficiently using Linear Programming. Under SO, any two parking clusters cannot be used at the same time by travelers between more than one Origin–Destination (O–D) pairs. The SO parking flow pattern is not unique, which offers sufficient flexibility for operators to achieve different management objectives while keeping the flow pattern optimal. We show that any optimal flow pattern can be achieved by charging parking prices in each area that only depend on the time or occupancy, regardless of origins and destinations of users of this area. In the two numerical experiments, the best system performance is usually achieved by pricing the more preferred (convenient) area such that it is used up to a terminal occupancy of around 85–95%. Optimal pricing essentially balances the parking congestion (namely cruising time) and the level of convenience.  相似文献   
124.
Macroscopic pedestrian models for bidirectional flow analysis encounter limitations in describing microscopic dynamics at crosswalks. Pedestrian behavior at crosswalks is typically characterized by the evasive effect with conflicting pedestrians and vehicles and the following effect with leading pedestrians. This study proposes a hybrid approach (i.e., route search and social force-based approach) for modeling of pedestrian movement at signalized crosswalks. The key influential factors, i.e., leading pedestrians, conflict with opposite pedestrians, collision avoidance with vehicles, and compromise with traffic lights, are considered. Aerial video data collected at one intersection in Beijing, China were recorded and extracted. A new calibration approach based on a genetic algorithm is proposed that enables optimization of the relative error of pedestrian trajectory in two dimensions, i.e., moving distance and angle. Model validation is conducted by comparison with the observed trajectories in five typical cases of pedestrian crossing with or without conflict between pedestrians and vehicles. The characteristics of pedestrian flow, speed, acceleration, pedestrian-vehicle conflict, and the lane formation phenomenon were compared with those from two competitive models, thus demonstrating the advantage of the proposed model.  相似文献   
125.
A methodology for optimizing variable pedestrian evacuation guidance in buildings with convex polygonal interior spaces is proposed. The optimization of variable guidance is a bi-level problem. The calculation of variable guidance based on the prediction of congestion and hazards is the upper-level problem. The prediction of congestion provided the variable guidance is the lower-level problem. A local search procedure is developed to solve the problem. The proposed methodology has three major contributions. First, a logistic regression model for guidance compliance behavior is calibrated using a virtual reality experiment and the critical factors for the behavior are identified. Second, the guidance compliance and following behaviors are considered in the lower-level problem. Third, benchmarks are calculated to evaluate the performance of optimized variable guidance, including the lower bound of the maximum evacuation time and the maximum evacuation time under a fixed guidance. Finally, the proposed methodology is validated with numerical examples. Results show that the method has the potential to reduce evacuation time in emergencies.  相似文献   
126.
An experiment tested whether physical disorder affected low to moderate income African–American children’s choice of street to walk on and their parents’ choice of a street for them to walk on. The experiment used an innovative desktop simulation in which 32 fourth and fifth grade African–American children and 30 parents viewed and explored pairs of virtual walk-through streets manipulated on disorder (across three contexts and two other street and sidewalk characteristics) and picked from each pair the one to walk on (child) or for the child to walk on (parent). Each participant was asked to report the reasons for the choices. The analysis revealed that children and their parents were more likely to walk (or have the child walk) on streets lower in disorder. Reported reasons for choices confirmed the importance of physical disorder in affecting walking choices. Low-cost improvements in order may make streets more desirable for recreational walking.  相似文献   
127.
顾民  潘亮 《综合运输》2021,(2):59-65
本文对高铁客运枢纽区域内步行交通的影响范围和功能定位进行分析,提出在站城融合理念下,步行交通是高铁客运枢纽最重要的交通方式。利用开源数据,对比我国京沪高铁沿线与日本东海道新干线,以及北京南站、上海虹桥站、东京站、名古屋站,分析枢纽步行交通的影响因素,并提出站城融合背景下枢纽步行交通系统的规划建设重点和指标体系,为高铁客运枢纽实现站城融合、建立完善的步行交通系统提供参考。  相似文献   
128.
Cross-border transit facilities constitute major public investment, and thus must serve the long-term needs of the communities, such as providing access to schools and businesses, contributing to a shared regional culture and lifestyle, fostering international trade, and supporting jobs for the region’s residents. Numerous studies have been conducted to evaluate the economic implications of vehicular flow delays at border crossings, however none of the studies focused on assessing cross-border flow of bus passengers and pedestrians. Since pedestrians are considered to be autonomous, intelligent, and perceptive, it is a challenging task to predict pedestrian movement and behavior in comparison to vehicular flows which follow a specific set of traffic rules. This paper presents a multiagent based multimodal simulation model to evaluate the capacity and performance of a cross-border transit facility. The significance of this research is the use of dynamic mode choice functionality in the model, which allows an individual person to make instantaneous choices between available modes of transportation. The scope of interest of the paper is limited to simulating access interface, circulation areas, ancillary and processing facilities. The developed model was calibrated to ensure realistic performance, and validated against specific performance criteria such as throughput per processing facility. In order to demonstrate the applicability of the developed simulation model, capacity and operational planning of a pedestrian transit facility was performed. The relative performance of alternative design or configuration was evaluated using the level of service criteria. Lastly, the effectiveness of each proposed capacity or operational improvement strategy was compared to the “do-nothing” scenario.  相似文献   
129.
Both coordinated-actuated signal control systems and signal priority control systems have been widely deployed for the last few decades. However, these two control systems are often conflicting with each due to different control objectives. This paper aims to address the conflicting issues between actuated-coordination and multi-modal priority control. Enabled by vehicle-to-infrastructure (v2i) communication in Connected Vehicle Systems, priority eligible vehicles, such as emergency vehicles, transit buses, commercial trucks, and pedestrians are able to send request for priority messages to a traffic signal controller when approaching a signalized intersection. It is likely that multiple vehicles and pedestrians will send requests such that there may be multiple active requests at the same time. A request-based mixed-integer linear program (MILP) is formulated that explicitly accommodate multiple priority requests from different modes of vehicles and pedestrians while simultaneously considering coordination and vehicle actuation. Signal coordination is achieved by integrating virtual coordination requests for priority in the formulation. A penalty is added to the objective function when the signal coordination is not fulfilled. This “soft” signal coordination allows the signal plan to adjust itself to serve multiple priority requests that may be from different modes. The priority-optimal signal timing is responsive to real-time actuations of non-priority demand by allowing phases to extend and gap out using traditional vehicle actuation logic. The proposed control method is compared with state-of-practice transit signal priority (TSP) both under the optimized signal timing plans using microscopic traffic simulation. The simulation experiments show that the proposed control model is able to reduce average bus delay, average pedestrian delay, and average passenger car delay, especially for highly congested condition with a high frequency of transit vehicle priority requests.  相似文献   
130.
Situations characterised by the presence of a high density of pedestrians involved in negative interactions (e.g. flows in opposite directions) often represent a problematic scenario for simulation models, especially those taking a discrete approach to the representation and management of spatial aspects of the environment. While these situations can be relatively infrequent, and even if architects, event organisers and crowd managers actually try to prevent them as much as possible, they simply cannot be neglected and they actually represent interesting situations to be analysed by means of simulation. The paper presents specific extensions to a floor-field Cellular Automata pedestrian model that are specifically aimed at supporting the simulation of high density situations comprising negative interactions among pedestrians without incurring in the traditional limits of discrete approaches. The models are formally described and experimented in experimental and real world situations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号