首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   0篇
公路运输   51篇
综合类   12篇
水路运输   34篇
铁路运输   24篇
综合运输   14篇
  2022年   3篇
  2021年   8篇
  2020年   8篇
  2019年   4篇
  2018年   1篇
  2017年   6篇
  2016年   6篇
  2015年   4篇
  2014年   6篇
  2013年   8篇
  2012年   9篇
  2011年   4篇
  2010年   4篇
  2009年   6篇
  2008年   7篇
  2007年   9篇
  2006年   2篇
  2005年   11篇
  2004年   2篇
  2003年   5篇
  2002年   2篇
  2001年   3篇
  2000年   5篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
排序方式: 共有135条查询结果,搜索用时 31 毫秒
21.
It has been reported that low transformation temperature (LTT) weld metals are beneficial to generation of compressive residual stress around weld zone. In this study, the relationship among residual stress, size effect of LTT welded joints with different plate width and thickness as well as martensite start (Ms) temperatures was investigated by experimental and finite-element analysis. It was found that heat dissipation and thermal expansion coefficient of LTT weld metal had a significant impact on residual stress. Welded joint with a small plate width led to greater compressive residual stresses in the LTT weld, which was due to the lower heat dissipation and smaller thermal expansion coefficient of the LTT weld metal in due course of cooling process. Additionally, the finite-element analysis revealed that increasing plate width mainly affected the longitudinal residual stress, while increasing the plate thickness influenced all the residual stress components in the LTT weld. Furthermore, the LTT weld with a lower Ms temperature of 191 °C resulted in greater compressive residual stresses, and was less sensitive to the LTT joint size, as against the Ms temperature of 398 °C.  相似文献   
22.
Aural comfort is negatively affected during a train’s passage through various tunnel environments. The objective of this study was to propose a prediction model for determining optimal operation parameter combinations to improve train occupants’ aural comfort. High-speed train model tests, combined with a mathematical transfer model, were used to obtain the interior pressure transients under varying speeds, tunnel lengths and seal indexes. Then, a middle ear finite element model was used to simulate the dynamic responses under the pressure transients, and three indicators were employed to assess the severity of aural sensations. Meanwhile, the aural discomfort were classified into four groups according to the duration. Based on the simulation results, the ordinal regression analysis method was used to reveal the effects of the considered factors on aural comfort. The results indicate that aural discomfort sensations begin when a train runs in the middle of a tunnel but are mitigated when it approaches the tunnel exit. Furthermore, aural discomfort is positively correlated with the train speed and the distance from the driver cabin of the head car but negatively correlated with the seal index and tunnel length. As a conclusion, a mathematical prediction model was established that incorporates factors including the train speed, seal index, tunnel length and car position. It can not only forecast aural sensations under certain operation parameters and tunnel environments but also be used for determining the optimal operation parameters to ensure the best aural sensations for high-speed-train occupants.  相似文献   
23.
The problem of interaction between a floating ice cover and an engineering structure is considered, in which the ice–structure contact forces are caused by an increase in ice temperature due to solar radiation in situations, when the lateral thermal expansion of ice is constrained. The focus is on the determination of the maximum thermally-induced horizontal force exerted on a structure wall, assuming that the magnitude of this force is bound by the smallest force capable of fracturing the ice cover due to its buckling. The ice cover is modelled as a rectangular plate of uniform thickness, with its four edges being constrained by vertical rigid walls, and it is assumed that ice deforms, and eventually fails, by the mechanism of viscous creep buckling. The plate is subjected to in-plane axial compressive stresses developing in ice to prevent its thermal expansion due to solar heating, and is transversely (vertically) bent by the forces caused by the reaction of underlying water. The floating ice is treated as a material whose elastic and viscous properties depend on temperature and the ice porosity, and therefore they vary with time and the depth of ice. The results of numerical simulations, conducted for a variety of the ice plate horizontal dimensions, thicknesses and daytime temperature-change scenarios, illustrate the evolution of the plate deflection surface prior to its failure, and show the time variation of the maximum forces exerted by ice on a structure wall as functions of the ice thickness and maximum daytime temperature rise at the top surface of ice.  相似文献   
24.
本文分析了影响载体催化元件稳定性的几点原因,探讨了氧化铝载体和铂钯催化剂高温特性。  相似文献   
25.
通过钢结构表面防护方案研究、试验验证和运营线路试挂的方式,构建典型海洋大气环境下接触网钢腕臂的表面防护涂层体系,以保证接触网钢腕臂定位装置在可能的高温、高湿、高盐、污秽粉尘等多因素耦合环境,如近海、濒海、沿江、热带或亚热带山区等环境中在役寿命延长至15~20年。研究表明:(1)接触网钢腕臂定位装置长效防护涂层体系为热喷涂层+环氧封闭层组合的复合涂层体系;(2)所有钢腕臂组件均采用热喷涂涂层作为防护的基础层;(3)管件类外壁及精细零部件涂层体系采用高铝锌热喷涂涂层+双金属环氧封闭涂层;(4)管件内壁采用灌涂环氧涂料。  相似文献   
26.
我国城市轨道交通方兴未艾,改善候车环境的舒适性、降低地铁的运营能耗是保证地铁事业健康发展的必由之路。通风空调系统对地铁车站环境的舒适状况影响显著,但其能耗占地铁运营总能耗的比例大,有较大的节能潜力可以挖掘。因此,针对国内外关于地铁车站环境舒适性所开展的调查研究进行汇总,指出车站所在地的气象参数、车站结构和新旧程度以及沿进出站路线的环境参数变化幅度都是影响车站舒适性的主要因素。分析总结地铁通风空调系统的设计运营现状及节能研究进展,提出应通过物理过程分析合理建立空调负荷预测模型等,结合历史运行数据进行地铁通风空调系统运行方案的改进优化。  相似文献   
27.
The interest of using thermoplastic composite pipes has increased in offshore deepwater oil fields. Thermoplastic composite pipes consist of several carbon/glass fiber reinforced laminate layers to confer stiffness and strength located between inner and outer homogeneous thermoplastic layers for fluid containment and protection. This paper presents a theoretical analysis for thermoplastic composite pipes under combined pure torsion and thermomechanical loading from operational thermal gradients, considering the inner and outer isotropic homogeneous layers and intermediate transversely isotropic laminate ply layers. Perfect bond between adjacent layers and interfaces continuities are assumed. Based on the obtained stresses in the principal material directions, through-thickness failure indexes related to the von Mises and Maximum Stress or Tsai-Hill criteria are respectively evaluated for homogeneous and laminate layers. For each thermal gradient, the limit torque (i.e. when the failure index is equal to 1) is calculated. From the case study, it is observed that without thermal loading or for small operational temperature, failure occurs in the laminate, otherwise it is observed in the inner homogeneous layer. The thickness of the homogeneous layer significantly affects the limit torque and the absolute values of the limit clockwise and anticlockwise torque slightly differ when the operational temperature is included.  相似文献   
28.
近年来,随着全球变暖问题日趋严重,各大汽车制造商正在采用各类技术减少发动机油耗及尾气排放。作为减少发动机重量、增强发动机缸体内壁耐磨性能、减少摩擦力的新技术,气缸套热喷涂沉积技术成为了节能减排的重要技术手段。文章首先介绍了气缸套热喷涂技术的原理、加工工序以及几种常用的热喷涂沉积技术,而后引出了对一种新型电弧喷涂气缸套的工业化应用的介绍,进而重点阐述了某品牌汽车发动机制造厂商技术人员对新型电弧喷涂气缸套的质量检测方法。  相似文献   
29.
自从盘式制动装置问世以来,铁道车辆制动盘的热疲劳一直是个很棘手的问题。为开发对热冲击负荷有高耐热性能的铸铁制动盘,研制出了3种不同成分的候选材料。铸铁的主要化学成分为铁、碳、硅、锰、镍、铬、钼、铜和铝,并测试了其机械性能和热性能;然后用笔者研制出的热疲劳性能测试仪器进行了热疲劳性能的测试。该仪器可测温度范围为20~15...  相似文献   
30.
This article concerns thermal radiation hazards associated with unconfined liquefied natural gas (LNG) spills on water. Consequence assessment methods were compared to clarify their model characteristics in large-scale LNG spills from an LNG carrier (LNGC). The consequences of LNG release, pool spread, and pool fire hazards were estimated using the following practical methods: the Federal Energy Regulatory Commission’s (FERC) method, the Sandia National Laboratories’ method, and the Fay method. The sensitivity of consequence analysis results to the breach size of a tank was examined under the assumption that LNG is released from a common type LNGC of 125000 m3 cargo capacity. Consequently, it was found that the FERC method is useful from the practical viewpoint of being applicable to any breach size. Finally, thermal radiation hazards from pool fires involving spills from one of the latest and largest LNGCs (250 000 m3 cargo capacity), which are currently considered for construction, were investigated using the recommended FERC method, and the results are discussed in comparison with those for common type LNGCs. As a result, it was found that the maximum thermal hazard distance is longer by only about 24% compared with the common type LNGC, whereas the spill volume is twice as much.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号