首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1276篇
  免费   31篇
公路运输   270篇
综合类   368篇
水路运输   81篇
铁路运输   147篇
综合运输   441篇
  2025年   2篇
  2024年   13篇
  2023年   5篇
  2022年   20篇
  2021年   22篇
  2020年   20篇
  2019年   12篇
  2018年   63篇
  2017年   49篇
  2016年   54篇
  2015年   81篇
  2014年   83篇
  2013年   88篇
  2012年   77篇
  2011年   117篇
  2010年   47篇
  2009年   68篇
  2008年   72篇
  2007年   125篇
  2006年   108篇
  2005年   79篇
  2004年   38篇
  2003年   17篇
  2002年   12篇
  2001年   20篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1994年   1篇
  1990年   1篇
  1988年   2篇
排序方式: 共有1307条查询结果,搜索用时 0 毫秒
991.
    
This paper provides a globally optimal solution to an important problem: given a real-world route, what is the most energy-efficient way to drive a vehicle from the origin to the destination within a certain period of time. Along the route, there may be multiple stop signs, traffic lights, turns and curved segments, roads with different grades and speed limits, and even leading vehicles with pre-known speed profiles. Most of such route information and features are actually constraints to the optimal vehicle speed control problem, but these constraints are described in two different domains. The most important concept in solving this problem is to convert the distance-domain route constraints to some time-domain state and input constraints that can be handled by optimization methods such as dynamic programming (DP). Multiple techniques including cost-to-go function interpolation and parallel computing are used to reduce the computation of DP and make the problem solvable within a reasonable amount of time on a personal computer.  相似文献   
992.
    
Efficient planning of Airport Acceptance Rates (AARs) is key for the overall efficiency of Traffic Management Initiatives such as Ground Delay Programs (GDPs). Yet, precisely estimating future flow rates is a challenge for traffic managers during daily operations as capacity depends on a number of factors/decisions with very dynamic and uncertain profiles. This paper presents a data-driven framework for AAR prediction and planning towards improved traffic flow management decision support. A unique feature of this framework is to account for operational interdependency aspects that exist in metroplex systems and affect throughput performance. Gaussian Process regression is used to create an airport capacity prediction model capable of translating weather and metroplex configuration forecasts into probabilistic arrival capacity forecasts for strategic time horizons. To process the capacity forecasts and assist the design of traffic flow management strategies, an optimization model for capacity allocation is developed. The proposed models are found to outperform currently used methods in predicting throughput performance at the New York airports. Moreover, when used to prescribe optimal AARs in GDPs, an overall delay reduction of up to 9.7% is achieved. The results also reveal that incorporating robustness in the design of the traffic flow management plan can contribute to decrease delay costs while increasing predictability.  相似文献   
993.
    
Advanced traffic management systems rely heavily on technology to perform accurate estimations of the current state of the traffic as well as its short-term evolution. The objectives are improving traffic flow and enhancing road safety. Their success is based on accurate monitoring of two key variables, specifically speed and occupancy. The latter of the two has, to date, received significantly less attention from the scientific community. In this work we present a lightweight method to perform “on-line” occupancy estimation. We first propose three occupancy measurements calculated from data collected by a floating car: vehicle count, percentage of stop time, and headway. We then extend these discrete values to a continuous estimation of occupancy in space and time. The proposed estimators are based on a pairwise linear regression of each of the previously calculated measurements over certain references obtained from other floating cars or magnetic loop detectors. The method has been calibrated and validated under real traffic conditions and data. Despite the ease of implementation, the method is able to reproduce the occupancy values generated by the actual loop detectors, achieving promising results, with estimation errors down to 6.52%, even before multivehicle systems are considered.  相似文献   
994.
    
In this paper, a model-based perimeter control policy for large-scale urban vehicular networks is proposed. Assuming a homogeneously loaded vehicle network and the existence of a well-posed Network Fundamental Diagram (NFD), we describe a protected network throughout its aggregated dynamics including nonlinear exit flow characteristics. Within this framework of constrained optimal boundary flow gating, two main performance metrics are considered: (a) first, connected to the NFD, the concept of average network travel time and delay as a performance metric is defined; (b) second, at boundaries, we take into account additional external network queue dynamics governed by uncontrolled inflow demands. External queue capacities in terms of finite-link lengths are used as the second performance metric. Hence, the corresponding performance requirement is an upper bound of external queues. While external queues represent vehicles waiting to enter the protected network, internal queue describes the protected network’s aggregated behavior.By controlling the number of vehicles joining the internal queue from the external ones, herewith a network traffic flow maximization solution subject to the internal and external dynamics and their performance constraints is developed. The originally non-convex optimization problem is transformed to a numerically efficiently convex one by relaxing the performance constraints into time-dependent state boundaries. The control solution can be interpreted as a mechanism which transforms the unknown arrival process governing the number of vehicles entering the network to a regulated process, such that prescribed performance requirements on travel time in the network and upper bound on the external queue are satisfied. Comparative numerical simulation studies on a microscopic traffic simulator are carried out to show the benefits of the proposed method.  相似文献   
995.
    
We study the shared autonomous vehicle (SAV) routing problem while considering congestion. SAVs essentially provide a dial-a-ride service to travelers, but the large number of vehicles involved (tens of thousands of SAVs to replace personal vehicles) results in SAV routing causing significant congestion. We combine the dial-a-ride service constraints with the linear program for system optimal dynamic traffic assignment, resulting in a congestion-aware formulation of the SAV routing problem. Traffic flow is modeled through the link transmission model, an approximate solution to the kinematic wave theory of traffic flow. SAVs interact with travelers at origins and destinations. Due to the large number of vehicles involved, we use a continuous approximation of flow to formulate a linear program. Optimal solutions demonstrate that peak hour demand is likely to have greater waiting and in-vehicle travel times than off-peak demand due to congestion. SAV travel times were only slightly greater than system optimal personal vehicle route choice. In addition, solutions can determine the optimal fleet size to minimize congestion or maximize service.  相似文献   
996.
Macroscopic fundamental diagram (MFD) describes the macro relationship between a network vehicle density and a network space mean flow, without requiring the mastery of complex origin to destination data. Thus, MFD provides an opportunity for the macro control of urban road network. However, most of the existing MFD control methods ignore the active role of traffic guidance in solving congestion problems. This study presents a traffic guidance–perimeter control coupled (TGPCC) method to improve the performance of macroscopic traffic networks. The method considers the optimal cumulative volume of a network as the goal and establishes a programming function according to the network equilibrium rule of traffic flow amongst multiple MFD sub-regions, which regards the minimum delay of network, as the objective. The Logit model for the compliance rate of driver route guidance is established by the stated preference survey. Moreover, the perimeter control (PC) method is proposed for adjusting the phase split of intersections. Finally, three schemes, namely, the TGPCC, PC and the method without PC and guidance are tested on a network with four well-defined MFD sub-regions. Results show that the TGPCC addresses the issue of congestion and decreases the total delay accordingly.  相似文献   
997.
    
In this paper, a novel freeway traffic speed estimation method based on probe data is presented. In contrast to other traffic speed estimators, it only requires velocity data from probes and does not depend on any additional data inputs such as density or flow information. In the first step the method determines the three traffic phases free flow, synchronized flow, and Wide Moving Jam (WMJ) described by Kerner et al. in space and time. Subsequently, reported data is processed with respect to the prevailing traffic phase in order to estimate traffic velocities. This two-step approach allows incorporating empirical features of phase fronts into the estimation procedure. For instance, downstream fronts of WMJs always propagate upstream with approximately constant velocity, and downstream fronts of synchronized flow phases usually stick to bottlenecks. The second step assures the validity of measured velocities is limited to the extent of its assigned phase. Effectively, velocity information in space-time can be estimated more distinctively and the result is therefore more accurate even if the input data density is low.The accuracy of the proposed Phase-Based Smoothing Method (PSM) is evaluated using real floating car data collected during two traffic congestions on the German freeway A99 and compared to the performance of the Generalized Adaptive Smoothing Method (GASM) as well as a naive algorithm. The quantitative and qualitative results show that the PSM reconstructs the congestion pattern more accurately than the other two. A subsequent analysis of the computational efficiency and sensitivity demonstrates its practical suitability.  相似文献   
998.
    
Acoustic-based mix design is still far from achieving a clear and accepted rationale. The three main dominions (generation, absorption, propagation) which affect pavement acoustic performance involve a number of acoustic parameters. Their relationship with pavement properties is scarcely or insufficiently known. In more detail, the parameters that define the acoustic coupling between the two phases that comprise a porous material are: porosity, resistivity, tortuosity, and viscous and thermal factors. Consequently, the spectrum of a pavement absorption coefficient depends, in particular, on tortuosity, whose relationship with HMA (hot mix asphalt) bulk properties is still an issue.Given that, the study described in this paper aimed at: (i) assessing the effect of the tortuosity on the absorption coefficient of a pavement layer; (ii) assessing the dependence of tortuosity on mix design parameters and/or mix properties; (iii) deriving a straightforward algorithm to estimate the effect of tortuosity-related properties on the absorption coefficient.Based on the above issues, an experimental plan was designed and carried out in order to study these relationships and set out a tentative theoretical and practical framework. The relationships between acoustic and traditional bulk properties of pavement mixtures were analysed. Acoustic models and hydraulic analogies were considered and, based on them, relationships were formalised and submitted to experimental validations. A simple relationship to derive tortuosity from nominal maximum aggregate size and thickness was derived. This relationship was used to derive the frequency of the first peak of the absorption spectrum, based on HMA properties. Nominal maximum aggregate size and lift thickness emerged as key factors in patterning peak frequency.Future research will address a number of issues among which the following can be listed: synergetic assessment of the influence of HMA properties on the absorption coefficient over the entire spectrum, synergetic consideration of generation and absorption factors. Practical benefits and outcomes are expected for both practitioners and researchers.  相似文献   
999.
    
Development of strategies to control urban air pollution is a complex process involving a wide range of sciences. In this study a system dynamics model is proposed in order to estimate the behavior of parameters affecting air pollution in Tehran. The proposed model includes two subsystems: (1) urban transportation, (2) air polluting industries. In this paper, several policies are proposed to mitigate air pollution. The proposed model is simulated under several scenarios using historical data of transportation and industrial sectors in Tehran. Policies are categorized as: (1) road construction, (2) technology improvement in fuel and automotive industries, (3) traffic control plans, (4) development of public transportation infrastructures. The results show effectiveness of the proposed policies. In this case, technology improvement in fuel and automotive industries and development of public transportation infrastructures are more effective policies in order to reduce air pollution.  相似文献   
1000.
This paper proposes a generalized model to estimate the peak hour origin–destination (OD) traffic demand variation from day-to-day hourly traffic counts throughout the whole year. Different from the conventional OD estimation methods, the proposed modeling approach aims to estimate not only the mean but also the variation (in terms of covariance matrix) of the OD demands during the same peak hour periods due to day-to-day fluctuation over the whole year. For this purpose, this paper fully considers the first- and second-order statistical properties of the day-to-day hourly traffic count data so as to capture the stochastic characteristics of the OD demands. The proposed model is formulated as a bi-level optimization problem. In the upper-level problem, a weighted least squares method is used to estimate the mean and covariance matrix of the OD demands. In the lower-level problem, a reliability-based traffic assignment model is adopted to take account of travelers’ risk-taking path choice behaviors under OD demand variation. A heuristic iterative estimation-assignment algorithm is proposed for solving the bi-level optimization problem. Numerical examples are presented to illustrate the applications of the proposed model for assessment of network performance over the whole year.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号