首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1119篇
  免费   8篇
公路运输   213篇
综合类   323篇
水路运输   68篇
铁路运输   88篇
综合运输   435篇
  2022年   5篇
  2021年   16篇
  2020年   8篇
  2019年   4篇
  2018年   55篇
  2017年   39篇
  2016年   53篇
  2015年   68篇
  2014年   77篇
  2013年   82篇
  2012年   62篇
  2011年   104篇
  2010年   43篇
  2009年   60篇
  2008年   67篇
  2007年   116篇
  2006年   98篇
  2005年   78篇
  2004年   38篇
  2003年   16篇
  2002年   10篇
  2001年   16篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1994年   1篇
排序方式: 共有1127条查询结果,搜索用时 15 毫秒
21.
Traffic instability is an important but undesirable feature of traffic flow. This paper reports our experimental and empirical studies on traffic flow instability. We have carried out a large scale experiment to study the car-following behavior in a 51-car-platoon. The experiment has reproduced the phenomena and confirmed the findings in our previous 25-car-platoon experiment, i.e., standard deviation of vehicle speeds increases in a concave way along the platoon. Based on our experimental results, we argue that traffic speed rather than vehicle spacing (or density) might be a better indicator of traffic instability, because vehicles can have different spacing under the same speed. For these drivers, there exists a critical speed between 30 km/h and 40 km/h, above which the standard deviation of car velocity is almost saturated (flat) along the 51-car-platoon, indicating that the traffic flow is likely to be stable. In contrast, below this critical speed, traffic flow is unstable and can lead to the formation of traffic jams. Traffic data from the Nanjing Airport Highway support the experimental observation of existence of a critical speed. Based on these findings, we propose an alternative mechanism of traffic instability: the competition between stochastic factors and the so-called speed adaptation effect, which can better explain the concave growth of speed standard deviation in traffic flow.  相似文献   
22.
Noise pollution in urban areas has many harmful effects on the citizens. There are varieties of noise generation sources of which the traffic noise could be a major source. The point which is perhaps less noticed is that sound level is not the only parameter to indicate the extent and intensity of noise pollution. Situation of urban land uses, distribution of population centers and types of passages can deeply affect the concern on this environmental issue but not with a similar ratio. This article presents an overlaying technique to define noise prone areas using all different factors involved. A case study was carried out in the District 14 of Tehran Metropolitan City where there are busy streets and highways. For this purpose, the share of each criterion in noise pollution intensity was determined using Analytical Hierarchy Process (AHP). Afterwards, the map layers were overlaid based upon the relative importance of the criteria to get the final map on which the noise prone areas are specified. The developed method could be used as a tool for indirect estimation of noise pollution by which instead of direct measurement of the equivalent sound level, it would be possible to predict noise susceptible areas considering the most important influential factors.  相似文献   
23.
A novel multiclass macroscopic model is proposed in this article. In order to enhance first-in, first-out property (FIFO) and transmission function in the multiclass traffic modeling, a new multiclass cell transmission model with FIFO property (herein called FM-CTM) is extended from its prior multiclass cell transmission model (M-CTM). Also, to enhance its analytical compactness and resultant computational convenience, FM-CTM is formulated in this paper as a set of closed-form matrix equations. The objective is to improve the accuracy of traffic state estimation by enforcing FIFO property when a fast vehicle cannot overtake a slow vehicle due to a limitation of a single-lane road. Moreover, the proposed model takes into account a different priority for vehicles of each class to move forward through congested road conditions, and that makes the flow calculation independent from their free-flow speeds. Some hypothetical and real-world freeway networks with a constant or varying number of lanes are selected to verify FM-CTM by comparing with M-CTM and the conventional CTM. Observed densities of VISSIM and real-world dataset of I-80 are selected to compare with the simulated densities from the three CTMs. The numerical results show that FM-CTM outperforms the other two models by 15% of accuracy measures in most cases. Therefore, the proposed model is expected to be well applicable to the road network with a mixed traffic and varying number of lanes.  相似文献   
24.
Cellular Automaton (CA), an efficient dynamic modeling method that is widely used in traffic engineering, is newly introduced for traffic load modeling. This modeling method significantly addresses the modest traffic loads for long-span bridges. It does, however, require improvement to calculate precise load effects. This paper proposed an improved cellular automaton with axis information, defined as the Multi-axle Single-cell Cellular Automaton (MSCA), for the precise micro-simulation of random traffic loads on bridges. Four main ingredients of lattice, cells’ states, neighborhoods and transition rules are redefined in MSCA to generate microscopic vehicle sequences with detailed vehicle axle positions, user-defined cell sizes and time steps. The simulation methodology of MSCA is then proposed. Finally, MSCA is carefully calibrated and validated using site-specific WIM data. The results indicate: (1) the relative errors (REs) for the traffic parameters, such as volumes, speeds, weights, and headways, from MSCA are basically no more than ±10% of those of WIM data; (2) the load effects of three typical influence lines (ILs) with varied lengths of 50, 200 and 1000 m are also confidently comparable, both of which validate the rationality and precision of MSCA. Furthermore, the accurate vehicle parameters and gaps generated from MSCA can be applied not only for precise traffic loading on infrastructures but also for the accurate estimation of vehicle dynamics and safety. Hence, wide application of MSCA can potentially be expected.  相似文献   
25.
Adjusting traffic signal timings is a practical way for agencies to manage urban traffic without the need for significant infrastructure investments. Signal timings are generally selected to minimize the total control delay vehicles experience at an intersection, particularly when the intersection is isolated or undersaturated. However, in practice, there are many other potential objectives that might be considered in signal timing design, including: total passenger delay, pedestrian delays, delay inequity among competing movements, total number of stopping maneuvers, among others. These objectives do not tend to share the same relationships with signal timing plans and some of these objectives may be in direct conflict. The research proposes the use of a new multi-objective optimization (MOO) visualization technique—the mosaic plot—to easily quantify and identify significant tradeoffs between competing objectives using the set of Pareto optimal solutions that are normally provided by MOO algorithms. Using this tool, methods are also proposed to identify and remove potentially redundant or unnecessary objectives that do not have any significant tradeoffs with others in an effort to reduce problem dimensionality. Since MOO procedures will still be needed if more than one objective remains and MOO algorithms generally provide a set of candidate solutions instead of a single final solution, two methods are proposed to rank the set of Pareto optimal solutions based on how well they balance between the competing objectives to provide a final recommendation. These methods rely on converting the objectives to dimensionless values based on the optimal value for each specific objectives, which allows for direct comparison between and weighting of each. The proposed methods are demonstrated using a simple numerical example of an undersaturated intersection where all objectives can be analytically obtained. However, they can be readily applied to other signal timing problems where objectives can be obtained using simulation outputs to help identify the signal timing plan that provides the most reasonable tradeoff between competing objectives.  相似文献   
26.
Recently connected vehicle (CV) technology has received significant attention thanks to active pilot deployments supported by the US Department of Transportation (USDOT). At signalized intersections, CVs may serve as mobile sensors, providing opportunities of reducing dependencies on conventional vehicle detectors for signal operation. However, most of the existing studies mainly focus on scenarios that penetration rates of CVs reach certain level, e.g., 25%, which may not be feasible in the near future. How to utilize data from a small number of CVs to improve traffic signal operation remains an open question. In this work, we develop an approach to estimate traffic volume, a key input to many signal optimization algorithms, using GPS trajectory data from CV or navigation devices under low market penetration rates. To estimate traffic volumes, we model vehicle arrivals at signalized intersections as a time-dependent Poisson process, which can account for signal coordination. The estimation problem is formulated as a maximum likelihood problem given multiple observed trajectories from CVs approaching to the intersection. An expectation maximization (EM) procedure is derived to solve the estimation problem. Two case studies were conducted to validate our estimation algorithm. One uses the CV data from the Safety Pilot Model Deployment (SPMD) project, in which around 2800 CVs were deployed in the City of Ann Arbor, MI. The other uses vehicle trajectory data from users of a commercial navigation service in China. Mean absolute percentage error (MAPE) of the estimation is found to be 9–12%, based on benchmark data manually collected and data from loop detectors. Considering the existing scale of CV deployments, the proposed approach could be of significant help to traffic management agencies for evaluating and operating traffic signals, paving the way of using CVs for detector-free signal operation in the future.  相似文献   
27.
To investigate the car-following behavior under high speed driving conditions, we performed a set of 11-car-platoon experiments on Hefei airport highway. The formation and growth of oscillations have been analyzed and compared with that in low speed situations. It was found that there is considerable heterogeneity for the same driver over different runs of the experiment. This intra-driver heterogeneity was quantitatively depicted by a new index and incorporated in an enhanced two-dimensional intelligent driver model. Using both the new high-speed and the previous low-speed experimental data, the new and three existing models were calibrated. Simulation results show that the enhanced model outperforms the three existing car-following models that do not take into account this intra-driver heterogeneity in reproducing the essential features of the traffic in the experiments.  相似文献   
28.
It is well recognized that the left-turning movement reduces the intersection capacity significantly, because exclusive left turn phases are needed to discharge left turn vehicles only. This paper proposes the concept of Left-Hand Traffic (LHT) arterial, on where vehicles follow left-hand traffic rules as in England and India. The unconventional intersection where a LHT arterial intersects with a Right-Hand Traffic (RHT) arterial is named as symmetric intersection. It is only need three basic signal phases to separate all conflicts at symmetric intersection, while it at least need four signal phases at a conventional intersection. So, compared with the conventional intersection, the symmetric intersection can provide longer green time for the left-turning and the through movement, which can increase the capacity significantly. Through-movement waiting areas (TWAs) can be set at the symmetric intersection effectively, which can increase the capacity and short the cycle length furthermore. And the symmetric intersection is Channelized to improve the safety of TWAs. The Binary-Mixed-Integer-Linear-Programming (BMILP) model is employed to formulate the capacity maximization problem and signal cycle length minimization problem of the symmetric intersection. The BMILP model can be solved by standard branch-and-bound algorithms efficiently and outputs the lane allocation, signal timing decisions, and other decisions. Experiments analysis shows that the symmetric intersection with TWAs can increase the capacity and short the signal cycle length.  相似文献   
29.
The turning behavior is one of the most challenging driving maneuvers under non-protected phase at mixed-flow intersections. Currently, one-dimensional simulation models focus on car-following and gap-acceptance behaviors in pre-defined lanes with few lane-changing behaviors, and they cannot model the lateral and longitudinal behaviors simultaneously, which has limitation in representing the realistic turning behavior. This paper proposes a three-layered “plan-decision-action” (PDA) framework to obtain acceleration and angular velocity in the turning process. The plan layer firstly calculates the two-dimensional optimal path and dynamically adjusts the trajectories according to interacting objects. The decision layer then uses the decision tree method to select a suitable behavior in three alternatives: car-following, turning and yielding. Finally, in the action layer, a set of corresponding operational models specify the decided behavior into control parameters. The proposed model is tested by reproducing 210 trajectories of left-turn vehicles at a two-phase mixed-flow intersection in Shanghai. As a result, the simulation reproduces the variation of trajectories, while the coverage rate of the trajectories is 88.8%. Meanwhile, both the travel time and post-encroachment time of simulation and empirical turning vehicles are similar and do not show statistically significant difference.  相似文献   
30.
Parents compete for high-quality education for their children by enrolling them in good schools. However, in a Chinese mega-city like Beijing, three factors jointly lead to the spatial separation between schools and homes: the centralized public goods provision mechanism, the historical dependency in school location, and the constrained supply of housing in downtown. Without an adequate number of school buses, this spatial separation of schools and homes triggers the numerous long-distance driving-to-school trips by private vehicle during workday morning rush hours in Beijing. We use the start and end dates of “school holiday” as exogenous repeated shocks to the aggregate traffic congestion, and employ the two-stage least squares (2SLS) regression approach to examine the congestion and pollution consequences of such driving-to-school trips in Beijing. We find that, all else being equal, workdays during school holidays have a traffic congestion index 20% lower than that of non-school-holiday workdays. Such a sharp reduction in congestion leads to a significant decrease in PM10 concentration. Policymakers should lower such “extra” congestion and environmental costs via optimizing the spatial balance between school supply and demand.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号