首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   4篇
公路运输   58篇
综合类   1篇
水路运输   5篇
综合运输   25篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   9篇
  2017年   7篇
  2016年   19篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   31篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有89条查询结果,搜索用时 15 毫秒
11.
12.
The quality of current collection becomes a limiting factor when the aim is to increase the speed of the present railway systems. In this work an attempt is made to improve current collection quality optimising catenary geometry by means of a genetic algorithm (GA). As contact wire height and dropper spacing are thought to be highly influential parameters, they are chosen as the optimisation variables. The results obtained show that a GA can be used to optimise catenary geometry to improve current collection quality measured in terms of the standard deviation of the contact force. Furthermore, it is highlighted that apart from the usual pre-sag, other geometric parameters should also be taken into account when designing railway catenaries.  相似文献   
13.
14.
This paper presents a comprehensive model to capture the in-plane dynamics of a motorcycle system to evaluate the quality of its vibration isolation, and the design of an engine mount system. The model consists of two main structural components, the frame and the swing-arm, as well as the power-train assembly, engine mounts connecting the power-train to the frame, and the front-end assembly. The model accounts for frame and swing-arm flexibility using reduced order finite-element models. The power-train assembly is modelled as a rigid body connected to the frame through the engine mounts and to the swing-arm through a shaft assembly. The engine mounts are modelled as tri-axial spring-damper systems, and the front-end assembly is modelled as a lumped mass. The complete vehicle model is used to solve the engine mount optimisation problem, so as to minimise the total force transmitted to the frame while meeting packaging and other constraints. The mount system parameters – stiffness, position and orientation vectors – are used as design variables for the optimisation problem. The imposed loads include forces and moments due to engine imbalance as well as loads transmitted due to high amplitude, low frequency bump loads, through the tyre patch. Since packaging constraints play a significant role in a motorcycle layout, it is, therefore, important to determine the displacement envelope of the power-train under extreme loading conditions to ensure clearance with other components around the power-train. A motorcycle mount system should ideally be able to isolate the frame under steady-state loading conditions and at the same time limit the maximum excursion of the power-train under transient loading conditions.  相似文献   
15.
A numerical method for robust geometry optimisation of railway crossings is presented. The robustness is achieved by optimising the crossing geometry for a representative set of wheel profiles. As a basis for the optimisation, a crossing geometry is created where rail cross-sectional profiles and longitudinal height profiles of both wing rails and crossing nose are parameterised. Based on the approximation that the two problems are decoupled, separate optimisations are performed for the cross-sectional rail profiles and the longitudinal height profiles. The rail cross sections are optimised to minimise the maximum Hertzian wheel–rail contact pressure. The longitudinal height profiles are optimised to minimise the accumulated damage in the wing rail to crossing nose transition zone. The accumulated damage is approximated using an objective criterion that accounts for the angle of the wheel trajectory reversal during the transition from the wing rail to the crossing nose as well as the distribution of transition points for the utilised wheel profile set. It is found that small nonlinear height deviations from a linear longitudinal wing rail profile in the transition zone can reduce the objective compared to the nominal design. It is further demonstrated that the variation in wheel profile shapes, lateral wheel displacements and the feasible transition zone length of the crossing will determine the longitudinal height profiles of the wing rail and crossing nose if all wheel profiles are to make their transition within the transition zone.  相似文献   
16.
This article considers the optimisation of the sequence for clearing snow from stretches of the manoeuvring area of an airport. This issue involves the optimisation of limited resources to remove snow from taxiways and runways thereby leaving them in an acceptable condition for operating aircraft. The airfield is divided into subsets of significant stretches for the purpose of operations and target times are established during which these are open to aircraft traffic. The document contains several mathematical models each with different functions, such as the end time of the process, the sum of the end times of each stretch and gap between the estimated and the real end times. During this process, we introduce different operating restrictions on partial fulfilment of the operational targets as applied to zones of special interest, or relating to the operation of the snow‐clearing machines. The problem is solved by optimisation based on linear programming. The article gives the results of the computational tests carried out on five distinct models of the manoeuvring area, which cover increasingly complex situations and larger areas. The mathematical model is particularised for the case of the manoeuvring area of Adolfo Suarez Madrid—Barajas Airport. Copyright © 2016 John Wiley & Sons, Ltd.
    Highlights
  • Optimal sequence for clearing snow from the manoeuvring area of an airport.
  • Contains optimising algorithms solved using CPLEX LP‐based tree search.
  • Restrictions on partial fulfilment of operational targets applied to subsets of significant stretches, used for planning the operation of snow‐clearing machines.
  • Model applied to the case of the manoeuvring area of Adolfo Suárez Madrid Barajas Airport.
  • Conclusions are given on the results of the computational tests carried out. There are five models of the manoeuvring area which cover increasingly complex situations and larger areas.
  相似文献   
17.
In this paper, a rule-based controller is developed for the control of a semi-active suspension to achieve minimal vertical acceleration. The rules are derived from the results obtained with a model predictive controller. It is shown that a rule-based controller can be derived that mimics the results of the model predictive controller and minimises vertical acceleration. Besides this, measurements on a test vehicle show that the developed rule-based controller achieves a real-world reduction of the vertical acceleration, which is in agreement with the simulations.  相似文献   
18.
To improve safety and maximum admissible speed on different operational scenarios, multiobjective optimisation of bogie suspension components of a one-car railway vehicle model is considered. The vehicle model has 50 degrees of freedom and is developed in multibody dynamics software SIMPACK. Track shift force, running stability, and risk of derailment are selected as safety objective functions. The improved maximum admissible speeds of the vehicle on curves are determined based on the track plane accelerations up to 1.5?m/s2. To attenuate the number of design parameters for optimisation and improve the computational efficiency, a global sensitivity analysis is accomplished using the multiplicative dimensional reduction method (M-DRM). A multistep optimisation routine based on genetic algorithm (GA) and MATLAB/SIMPACK co-simulation is executed at three levels. The bogie conventional secondary and primary suspension components are chosen as the design parameters in the first two steps, respectively. In the last step semi-active suspension is in focus. The input electrical current to magnetorheological yaw dampers is optimised to guarantee an appropriate safety level. Semi-active controllers are also applied and the respective effects on bogie dynamics are explored. The safety Pareto optimised results are compared with those associated with in-service values. The global sensitivity analysis and multistep approach significantly reduced the number of design parameters and improved the computational efficiency of the optimisation. Furthermore, using the optimised values of design parameters give the possibility to run the vehicle up to 13% faster on curves while a satisfactory safety level is guaranteed. The results obtained can be used in Pareto optimisation and active bogie suspension design problems.  相似文献   
19.
The aim of this work is to assess and compare the mathematical models of two pneumatic suspension architectures and show how they can converge, after appropriate simplifications, to a general linear form. After making this model dimensionless, it will be used to study, with a transmissibility analysis, the behaviour of a mono-suspension (quarter-car model). Finally, an example of a design process will be shown to highlight the strengths and weaknesses of both architectures and to provide the reader with a practical design tool.  相似文献   
20.
In this paper, three numerical algorithms for the identification of wheel–rail contact forces based on measured wheel disc strains on an instrumented railway wheelset are discussed and compared. The three algorithms include one approach resting on static calibration, one that is applying a Kalman filter and the third is exploiting an inverse identification scheme. To demonstrate and evaluate the alternative methods, two load cases including periodic excitation by sinusoidal wheel–rail irregularities and transient excitation by an insulated rail joint are considered. Based on a previously presented vehicle–track interaction model in the time domain, load scenarios are defined by taking the calculated vertical wheel–rail contact forces as the reference force to be re-identified by the proposed algorithms. The reference contact forces are applied on a finite element model of the wheel to generate synthetic observation data, that is, radial strains at the positions of the strain gauges, serving as input to the identification procedures. It is concluded that the inverse identification scheme leads to superior accuracy at higher computational cost. If on-line implementation and evaluation is required, the Kalman filter generates better accuracy than the static calibration approach.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号