首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   4篇
公路运输   58篇
综合类   1篇
水路运输   5篇
综合运输   25篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   9篇
  2017年   7篇
  2016年   19篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   31篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有89条查询结果,搜索用时 46 毫秒
51.
This paper presents a methodology for improving the crossing (frog) geometry through the robust optimisation approach, wherein the variability of the design parameters within a prescribed tolerance is included in the optimisation problem. Here, the crossing geometry is defined by parameterising the B-spline represented cross-sectional shape and the longitudinal height profile of the nose rail. The dynamic performance of the crossing is evaluated considering the variation of wheel profiles and track alignment. A multipoint approximation method (MAM) is applied in solving the optimisation problem of minimising the contact pressure during the wheel–rail contact and constraining the location of wheel transition at the crossing. To clarify the difference between the robust optimisation and the normal deterministic optimisation approaches, the optimisation problems are solved in both approaches. The results show that the deterministic optimum fails under slight change of the design variables; the robust optimum, however, has improved and robust performance.  相似文献   
52.
53.
For the complex structure and vibration characteristics of coupling driver-seat-cab system of trucks, there is no damping optimisation theory for its suspensions at present, which seriously restricts the improvement of vehicle ride comfort. Thus, in this paper, the seat suspension was regarded as ‘the fifth suspension’ of cab, the ‘Five-suspensions’ for this system was proposed. Based on this, using the mechanism modelling method, a 4 degree-of-freedom coupling driver-seat-cab system model was presented; then, by the tested cab suspensions excitation and seat acceleration response, its parameters identification mathematical model was established. Based on this, taking optimal ride comfort as target, its damping collaborative optimisation mathematical model was built. Combining the tested signals and a simulation model with the mathematical models of parameters identification and damping collaborative optimisation, a complete flow of hybrid modelling and damping collaborative optimisation of Five-suspensions was presented. With a practical example of seat and cab system, the damping parameters were optimised and validated by simulation and bench test. The results show that the model and method proposed are correct and reliable, providing a valuable reference for the design of seat suspension and cab suspensions.  相似文献   
54.
Traditional shock absorbers provide favourable ride comfort and road handling by dissipating the suspension vibration energy into heat waste. In order to harvest this dissipated energy and improve the vehicle fuel efficiency, many energy-harvesting shock absorbers (EHSAs) have been proposed in recent years. Among them, two types of EHSAs have attracted much attention. One is a traditional EHSA which converts the oscillatory vibration into bidirectional rotation using rack-pinion, ball-screw or other mechanisms. The other EHSA is equipped with a mechanical motion rectifier (MMR) that transforms the bidirectional vibration into unidirectional rotation. Hereinafter, they are referred to as NonMMR-EHSA and MMR-EHSA, respectively. This paper compares their performances with the corresponding traditional shock absorber by using closed-form analysis and numerical simulations on various types of vehicles, including passenger cars, buses and trucks. Results suggest that MMR-EHSA provides better ride performances than NonMMR-EHSA, and that MMR-EHSA is able to improve both the ride comfort and road handling simultaneously over the traditional shock absorber when installed on light-damped, heavy-duty vehicles. Additionally, the optimal parameters of MMR-EHSA are obtained for ride comfort. The optimal solutions (‘Pareto-optimal solutions’) are also obtained by considering the trade-off between ride comfort and road handling.  相似文献   
55.
Scissor seat suspension has been applied widely to attenuate the cab vibrations of commercial vehicles, while its design generally needs a trade-off between the seat acceleration and suspension travel, which creates a typical optimisation issue. A complexity for this issue is that the optimal dynamics parameters are not easy to approach solutions fast and unequivocally. Hence, the hierarchical optimisation on scissor seat suspension characteristic and structure is proposed, providing a top-down methodology with the globally optimal and fast convergent solutions to compromise these design contradictions. In details, a characteristic-oriented non-parametric dynamics model of the scissor seat suspension is formulated firstly via databases, describing its vertical dynamics accurately. Then, the ideal vertical stiffness-damping characteristic is cascaded via the characteristic-oriented model, and the structure parameters are optimised in accordance with a structure-oriented multi-body dynamics model of the scissor seat suspension. Eventually, the seat effective amplitude transmissibility factor, suspension travel and the CPU time for solving are evaluated. The results show the seat suspension performance and convergent speed of the globally optimal solutions are improved well. Hence, the proposed hierarchical optimisation methodology regarding characteristic and structure of the scissor seat suspension is promising for its virtual development.  相似文献   
56.
Active suspension is commonly considered under the framework of vertical vehicle dynamics control aimed at improvements in ride comfort. This paper uses a collocation-type control variable optimisation tool to investigate to which extent the fully active suspension (FAS) application can be broaden to the task of vehicle handling/cornering control. The optimisation approach is firstly applied to solely FAS actuator configurations and three types of double lane-change manoeuvres. The obtained optimisation results are used to gain insights into different control mechanisms that are used by FAS to improve the handling performance in terms of path following error reduction. For the same manoeuvres the FAS performance is compared with the performance of different active steering and active differential actuators. The optimisation study is finally extended to combined FAS and active front- and/or rear-steering configurations to investigate if they can use their complementary control authorities (over the vertical and lateral vehicle dynamics, respectively) to further improve the handling performance.  相似文献   
57.
最安全路线运输问题研究   总被引:1,自引:0,他引:1  
讨论了最安全路线运输问题,给出了该问题的混合整数规划模型,并提出了该问题的解 法,最后给出了一个实例.  相似文献   
58.
In this study, a method regarding frame lateral vibration control based on the state feedback of an additional oscillator is proposed, so as to improve the bogie hunting stability. The multi-objective optimisation method (MOOP), with two objective functions of the stability index and control effort, is solved by the NSGA-II algorithm to obtain the feedback gains. The frame lateral vibration control can effectively improve the bogie hunting stability according to the linear and non-linear analysis of a high-speed train bogie, in which a fault of the yaw damper and time delay in the control system are considered. The effect of the oscillator suspension parameters and time delay on the system stability and robustness are analysed. The results show that the damped vibration frequency of the oscillator should be equal to the bogie hunting frequency, but a harder oscillator suspension can be used to improve the hunting critical speed margin of the bogie control system. However, just as how the feeding the frame states back directly, a hard oscillator suspension will lead to instability in the control system at a certain time delay. Therefore, the improvement of bogie hunting stability and reduction of control system stability must be considered when optimising the oscillator parameters. For the 350?km/h train bogie covered in this study, the optimal mass, natural frequency and damping ratio of the additional oscillator are acquired.  相似文献   
59.
This study investigates the coupled ride and directional performance characteristics of an articulated frame-steered vehicle (AFSV). A three-dimensional multi-body dynamic model of the vehicle is formulated integrating the hydro-mechanical frame steering and hydro-pneumatic suspension (HPS) systems. The model parameters are obtained from field-measured data acquired for an unsuspended AFSV prototype and a validated scaled HPS model. The HPS is implemented only at the front axle, which supports the driver cabin. The main parameters of the HPS, including the piston area, and flow areas of bleed orifices and check valves, are selected through design sensitivity analyses and optimisation, considering ride vibration, and roll- and yaw-plane stability performance measures. These include the frequency-weighted vertical vibration of the front unit, root-mean-square lateral acceleration during the sustained lateral load transfer ratio period prior to absolute rollover of the rear unit, and yaw-mode oscillation frequency following a lateral perturbation of the vehicle. The results suggested that the implementation of the HPS to the front unit alone could help preserve the directional stability limits compared to the unsuspended prototype vehicle and reduce the ride vibration exposure by nearly 30%. The results of sensitivity analyses revealed that the directional stability performance limits are only slightly affected by the HPS parameters. Further reduction in the ride vibration exposure was attained with the optimal design, irrespective of the payload variations. The vehicle operation at relatively higher speeds, however, would yield greater vibration exposure.  相似文献   
60.
The paper concerns the conceptual design of a transport system for pedestrian areas. The proposed transport system is based on a fleet of eco-sustainable Personal Intelligent City Accessible Vehicles (PICAVs). The vehicles are shared through the day by different users and the following specific services will be provided: instant access, open ended reservation and one way trips. Referring to the proposed transport system, a new methodology to optimise the fleet dimension and its distribution among the stations is proposed in this paper. The problem faced is an optimisation problem where the cost function to be minimised takes into account both the transport system cost and the user costs that depend on the waiting times. A random search algorithm has been adopted. Given a fleet dimension and its distribution among the stations, the waiting times of the users are assessed by a microscopic simulation. The simulation model tracks the second-by-second activity of each PICAV user, as well as the second-by-second activity of each vehicle. The overall methodology has been implemented in an object-oriented simulator. The proposed transport system has been planned and simulated for the historical city centre of Genoa, Italy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号