首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3003篇
  免费   235篇
公路运输   640篇
综合类   1170篇
水路运输   528篇
铁路运输   384篇
综合运输   516篇
  2024年   7篇
  2023年   22篇
  2022年   65篇
  2021年   85篇
  2020年   94篇
  2019年   77篇
  2018年   102篇
  2017年   102篇
  2016年   197篇
  2015年   164篇
  2014年   275篇
  2013年   216篇
  2012年   221篇
  2011年   248篇
  2010年   161篇
  2009年   193篇
  2008年   170篇
  2007年   203篇
  2006年   182篇
  2005年   117篇
  2004年   67篇
  2003年   48篇
  2002年   34篇
  2001年   60篇
  2000年   20篇
  1999年   28篇
  1998年   8篇
  1997年   19篇
  1996年   8篇
  1995年   3篇
  1994年   12篇
  1993年   8篇
  1992年   5篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1988年   5篇
  1986年   1篇
  1984年   1篇
排序方式: 共有3238条查询结果,搜索用时 31 毫秒
41.
超大跨度斜拉桥施工过程力学行为   总被引:2,自引:0,他引:2  
斜拉桥结构效应在施工过程中具有典型的时空变化特性,但目前对效应的时程特性及时空包络关注较少。建立精细的几何非线性分析模型,分析主跨1088m的苏通大桥施工过程力学行为,包括施工阶段效应增量、效应时程、效应包络及恒载效应。研究结果有助于结构设计和施工控制。  相似文献   
42.
胡兴昊  黄邦  王幸 《水运工程》2018,(12):193-197
针对目前预制桩承载力恢复特性研究与工程应用中的不足,依托西非某海工工程,提出高应变法。采用对同一钢管桩进行初打与不同休止时间复打相结合的试验方法,研究了大直径钢管桩沉桩后的承载力恢复过程。结合地质情况、沉桩与试验结果,得到了钢管桩承载力、侧阻力及端阻力随时间变化的一般规律及影响因素,并通过静载试验对研究结果进行了验证。该研究在提高项目施工效率、降低成本的同时,还得到了有意义的规律与结论,可为后续类似项目提供参考。  相似文献   
43.
Multi-state supernetworks have been advanced recently for modeling individual activity-travel scheduling decisions. The main advantage is that multi-dimensional choice facets are modeled simultaneously within an integral framework, supporting systematic assessments of a large spectrum of policies and emerging modalities. However, duration choice of activities and home-stay has not been incorporated in this formalism yet. This study models duration choice in the state-of-the-art multi-state supernetworks. An activity link with flexible duration is transformed into a time-expanded bipartite network; a home location is transformed into multiple time-expanded locations. Along with these extensions, multi-state supernetworks can also be coherently expanded in space–time. The derived properties are that any path through a space–time supernetwork still represents a consistent activity-travel pattern, duration choice are explicitly associated with activity timing, duration and chain, and home-based tours are generated endogenously. A forward recursive formulation is proposed to find the optimal patterns with the optimal worst-case run-time complexity. Consequently, the trade-off between travel and time allocation to activities and home-stay can be systematically captured.  相似文献   
44.
Systems that enable high levels of vehicle-automation are now beginning to enter the commercial marketplace. Road vehicles capable of operating independently of real-time human control under an increasing set of circumstances will likely become more widely available in the near future. Such vehicles are expected to bring a variety of benefits. Two such anticipated advantages (relative to human-driver vehicle control) are said to be increased road network capacity and the freeing up of the driver-occupant’s time to engage in their choice of leisurely or economically-productive (non-driving) tasks.In this study we investigate the implications for intersection capacity and level-of-service of providing occupants of automated (without real-time human control), autonomously-operating (without vehicle-to-X communication) cars with ride quality that is equivalent (in terms of maximum rates of longitudinal and lateral acceleration) to two types of rail systems: [urban] light rail transit and [inter-urban] high-speed rail. The literature suggests that car passengers start experiencing discomfort at lower rates of acceleration than car drivers; it is therefore plausible that occupants of an autonomously-operating vehicle may wish to instruct their vehicle to maneuver in a way that provides them greater ride comfort than if the vehicle-control algorithm simply mimicked human-driving-operation.On the basis of traffic microsimulation analysis, we found that restricting the dynamics of autonomous cars to the acceleration/deceleration characteristics of both rail systems leads to reductions in a signalized intersection’s vehicle-processing capacity and increases in delay. The impacts were found to be larger when constraining the autonomous cars’ dynamics to the more-restrictive acceleration/deceleration profile of high-speed rail. The scenarios we analyzed must be viewed as boundary conditions, because autonomous cars’ dynamics were by definition never allowed to exceed the acceleration/deceleration constraints of the rail systems. Appropriate evidence regarding motorists’ preferences does not exist at present; establishing these preferences is an important item for the future research agenda.This paper concludes with a brief discussion of research needs to advance this line of inquiry.  相似文献   
45.
Estimation of urban network link travel times from sparse floating car data (FCD) usually needs pre-processing, mainly map-matching and path inference for finding the most likely vehicle paths that are consistent with reported locations. Path inference requires a priori assumptions about link travel times; using unrealistic initial link travel times can bias the travel time estimation and subsequent identification of shortest paths. Thus, the combination of path inference and travel time estimation is a joint problem. This paper investigates the sensitivity of estimated travel times, and proposes a fixed point formulation of the simultaneous path inference and travel time estimation problem. The methodology is applied in a case study to estimate travel times from taxi FCD in Stockholm, Sweden. The results show that standard fixed point iterations converge quickly to a solution where input and output travel times are consistent. The solution is robust under different initial travel times assumptions and data sizes. Validation against actual path travel time measurements from the Google API and an instrumented vehicle deployed for this purpose shows that the fixed point algorithm improves shortest path finding. The results highlight the importance of the joint solution of the path inference and travel time estimation problem, in particular for accurate path finding and route optimization.  相似文献   
46.
With trajectory data, a complete microscopic and macroscopic picture of traffic flow operations can be obtained. However, trajectory data are difficult to observe over large spatiotemporal regions—particularly in urban contexts—due to practical, technical and financial constraints. The next best thing is to estimate plausible trajectories from whatever data are available. This paper presents a generic data assimilation framework to reconstruct such plausible trajectories on signalized urban arterials using microscopic traffic flow models and data from loops (individual vehicle passages and thus vehicle counts); traffic control data; and (sparse) travel time measurements from whatever source available. The key problem we address is that loops suffer from miss- and over-counts, which result in unbounded errors in vehicle accumulations, rendering trajectory reconstruction highly problematic. Our framework solves this problem in two ways. First, we correct the systematic error in vehicle accumulation by fusing the counts with sparsely available travel times. Second, the proposed framework uses particle filtering and an innovative hierarchical resampling scheme, which effectively integrates over the remaining error distribution, resulting in plausible trajectories. The proposed data assimilation framework is tested and validated using simulated data. Experiments and an extensive sensitivity analysis show that the proposed method is robust to errors both in the model and in the measurements, and provides good estimations for vehicle accumulation and vehicle trajectories with moderate sensor quality. The framework does not impose restrictions on the type of microscopic models used and can be naturally extended to include and estimate additional trajectory attributes such as destination and path, given data are available for assimilation.  相似文献   
47.
Recently connected vehicle (CV) technology has received significant attention thanks to active pilot deployments supported by the US Department of Transportation (USDOT). At signalized intersections, CVs may serve as mobile sensors, providing opportunities of reducing dependencies on conventional vehicle detectors for signal operation. However, most of the existing studies mainly focus on scenarios that penetration rates of CVs reach certain level, e.g., 25%, which may not be feasible in the near future. How to utilize data from a small number of CVs to improve traffic signal operation remains an open question. In this work, we develop an approach to estimate traffic volume, a key input to many signal optimization algorithms, using GPS trajectory data from CV or navigation devices under low market penetration rates. To estimate traffic volumes, we model vehicle arrivals at signalized intersections as a time-dependent Poisson process, which can account for signal coordination. The estimation problem is formulated as a maximum likelihood problem given multiple observed trajectories from CVs approaching to the intersection. An expectation maximization (EM) procedure is derived to solve the estimation problem. Two case studies were conducted to validate our estimation algorithm. One uses the CV data from the Safety Pilot Model Deployment (SPMD) project, in which around 2800 CVs were deployed in the City of Ann Arbor, MI. The other uses vehicle trajectory data from users of a commercial navigation service in China. Mean absolute percentage error (MAPE) of the estimation is found to be 9–12%, based on benchmark data manually collected and data from loop detectors. Considering the existing scale of CV deployments, the proposed approach could be of significant help to traffic management agencies for evaluating and operating traffic signals, paving the way of using CVs for detector-free signal operation in the future.  相似文献   
48.
Reliable travel behavior data is a prerequisite for transportation planning process. In large tourism dependent cities, tourists are the most dynamic population group whose size and travel choices remain unknown to planners. Traditional travel surveys generally observe resident travel behavior and rarely target tourists. Ubiquitous uses of social media platforms in smartphones have created a tremendous opportunity to gather digital traces of tourists at a large scale. In this paper, we present a framework on how to use location-based data from social media to gather and analyze travel behavior of tourists. We have collected data of about 67,000 users from Twitter using its search interface for Florida. We first propose several filtering steps to create a reliable sample from the collected Twitter data. An ensemble classification technique is proposed to classify tourists and residents from user coordinates. The accuracy of the proposed classifier has been compared against the state-of-the-art classification methods. Finally, different clustering methods have been used to find the spatial patterns of destination choices of tourists. Promising results have been found from the output clusters as they reveal most popular tourist spots as well as some of the emerging tourist attractions in Florida. Performance of the proposed clustering techniques has been assessed using internal clustering validation indices. We have analyzed temporal patterns of tourist and resident activities to validate the classification of the users in two separate groups of tourists and residents. Proposed filtering, identification, and clustering techniques will be significantly useful for building individual-level tourist travel demand models from social media data.  相似文献   
49.
This paper provides a review of research performed by Svenson with colleagues and others work on mental models and their practical implications. Mental models describe how people perceive and think about the world including covariances and relationships between different variables, such as driving speed and time. Research on mental models has detected the time-saving bias [Svenson, O. (1970). A functional measurement approach to intuitive estimation as exemplified by estimated time savings. Journal of Experimental Psychology, 86, 204–210]. It means that drivers relatively overestimate the time that can be saved by increasing speed from an already high speed, for example, 90–130?km/h, and underestimate the time that can be saved by increasing speed from a low speed, for example, 30–45?km/h. In congruence with this finding, mean speed judgments and perceptions of mean speeds are also biased and higher speeds given too much weight and low speeds too little weight in comparison with objective reality. Replacing or adding a new speedometer in the car showing min per km eliminated or weakened the time-saving bias. Information about braking distances at different speeds did not improve overoptimistic judgments of braking capacity, but information about collision speed with an object suddenly appearing on the road did improve judgments of braking capacity. This is relevant to drivers, politicians and traffic regulators.  相似文献   
50.
Estimating the travel time reliability (TTR) of urban arterial is critical for real-time and reliable route guidance and provides theoretical bases and technical support for sophisticated traffic management and control. The state-of-art procedures for arterial TTR estimation usually assume that path travel time follows a certain distribution, with less consideration about segment correlations. However, the conventional approach is usually unrealistic because an important feature of urban arterial is the dependent structure of travel times on continuous segments. In this study, a copula-based approach that incorporates the stochastic characteristics of segments travel time is proposed to model arterial travel time distribution (TTD), which serves as a basis for TTR quantification. First, segments correlation is empirically analyzed and different types of copula models are examined. Then, fitting marginal distributions for segment TTD is conducted by parametric and non-parametric regression analysis, respectively. Based on the estimated parameters of the models, the best-fitting copula is determined in terms of the goodness-of-fit tests. Last, the model is examined at two study sites with AVI data and NGSIM trajectory data, respectively. The results of path TTD estimation demonstrate the advantage of the proposed copula-based approach, compared with the convolution model without capturing segments correlation and the empirical distribution fitting methods. Furthermore, when considering the segments correlation effect, it was found that the estimated path TTR is more accurate than that by the convolution model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号