首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   3篇
公路运输   1篇
综合类   3篇
综合运输   10篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
排序方式: 共有14条查询结果,搜索用时 0 毫秒
11.
This paper analyzes and designs tradable credit schemes on networks with two types of players, namely, a finite number of Cournot–Nash (CN) players and an infinite number of (infinitesimal) Wardrop-equilibrium (WE) players. We first show that there are nonnegative anonymous credit schemes that yield system optimum, when transaction costs are not considered. We then analyze how transaction costs would affect the trading and route-choice behaviors of both CN and WE players, and discuss the equilibrium conditions on the coupled credit market and transportation network in the presence of transaction costs. A variational inequality is formulated to describe the equilibrium and is subsequently applied to a numerical example to assess the impacts of transaction costs on a tradable credit system. As expected, transaction costs reduce the trading volume of credits and change their market price. They also change the way how players respond to credit charges in their route choices and cause efficiency losses to the credit schemes that are previously designed without considering transaction costs. With transaction costs, travel costs of WE players will likely increase while those of CN players may decrease due to their higher adaptability in routing strategies.  相似文献   
12.
Artificial markets for mobility credits have been proposed as an alternative to conventional congestion pricing schemes. This paper examines the effects of transaction costs on two types of markets: an auction market and a negotiated market. In an auction market, users purchase all of the needed mobility credits through a competitive bidding process. In a negotiated market, the users initially receive certain amount of mobility credits from the government and trade with each other through negotiation to fulfill their needs. We assume that a brokerage service is built in both markets to facilitate transactions and accordingly, the users have to pay a commission fee proportional to the value of trade. The users are also given the option to purchase credits from the government if for some reasons they cannot use or wish to avoid the markets. Our analyses suggest that the auction market can achieve the desired equilibrium allocation of mobility credits as long as the government sets its price properly and the unit transaction cost is lower than the price that the market would reach in absence of transaction costs. However, in the negotiated market, transaction costs could divert the system from the desired equilibrium regardless of their magnitude. More importantly, the initial allocation of mobility credits may affect the final equilibrium even when marginal transaction costs are constant.  相似文献   
13.
This paper proposes an optimization model to minimize the “system costs” and guide travelers' behavior by exploring the optimal bus investment and tradable credits scheme design in a bimodal transportation system. Travelers' transport mode choice behavior (car or bus) and the modal equilibrium conditions between these two forms of transport are studied in the tradable credits scheme. Public transport priority is highlighted by charging car travelers credits only. The economies of scale presented by the transit system under the tradable credit scheme are analyzed by comparing the marginal cost and average cost. Numerical examples are presented to demonstrate the model. Furthermore, the effects of tradable credits schemes on bus investment and travelers' modal choice behavior are explored based on scenario discussions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
14.
A system of tradable travel credits is explored in a general network with homogeneous travelers. A social planner is assumed to initially distribute a certain number of travel credits to all eligible travelers, and then there are link-specific charges to travelers using that link. Free trading of credits among travelers is assumed. For a given credit distribution and credit charging scheme, the existence of a unique equilibrium link flow pattern is demonstrated with either fixed or elastic demand. It can be obtained by solving a standard traffic equilibrium model subject to a total credit consumption constraint. The credit price at equilibrium in the trading market is also conditionally unique. The appropriate distribution of credits among travelers and correct selection of link-specific rates is shown to lead to the most desirable network flow patterns in a revenue-neutral manner. Social optimum, Pareto-improving and revenue-neutral, and side-constrained traffic flow patterns are investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号