排序方式: 共有8条查询结果,搜索用时 0 毫秒
1
1.
2.
阀门空化问题是高水头船闸设计中最为关键的技术难题。结合国内外船闸研究及运行经验,在阀门埋深相同的前提下,阀门段廊道体形是影响阀门段空化特性的主要因素,亟需进行不同廊道体形的非恒定流特性研究。依托实际工程,开展模型试验进行 “底扩顶扩廊道体形+反弧门”与“平底顶渐扩廊道体形+反弧门”的对比研究,通过阀门廊道段动水载荷特性及阀门启闭力特性等各项指标的综合对比得出,前者更适合于高水头船闸,但该廊道形式工程量较大,体形复杂,施工要求较高,后期检修维护较困难。综合各种因素,犍为船闸选用“平底顶渐扩廊道体形+反弧门”方案。 相似文献
3.
4.
温度裂缝控制是大体积混凝土应用中需要解决的一个关键问题,结构开裂将会对混凝土的耐久性产生不利影响。为控制大体积混凝土开裂,犍为船闸主要水工建筑物采用低热水泥混凝土进行浇筑,并对实物试样的检验结果、现场采集温度数据及现场混凝土实际效果进行分析。结果表明,各龄期的水化热和混凝土的绝热温升均低于普通水泥,可有效降低混凝土温度应力,减少混凝土开裂风险。低热硅酸盐水泥可较好地应用于船闸工程中的大体积混凝土以解决开裂难题。 相似文献
5.
6.
针对船闸大体积混凝土建筑物浇筑容易出现温度裂缝的难题,通过优化施工配合比设计、埋设冷却水管、控制浇筑的层间厚度及间歇时间、表层保湿养护等多重裂缝控制施工技术措施,实现了龙溪口船闸大体积混凝土的裂缝控制,同时利用传感器采集混凝土温度数据,对控裂措施进行效果评价。现场实际应用中,浇筑后混凝土温峰在32.1~41.4℃之间,内表温差在9.6~16.4℃之间,均远低于温控指标的要求,未产生可见温度裂缝。浇筑时同步成型的混凝土干缩C20试块28 d最大干缩率为同养228×10-6,标养182×10-6,表明混凝土温降阶段大体积混凝土的抗裂性能得到大幅提高。 相似文献
7.
8.
1