首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
公路运输   1篇
铁路运输   2篇
  2023年   2篇
  2017年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
燃料电池船舶运载着大量氢气作为燃料,在给船舶带来动力的同时,也因其易泄漏、爆炸等特性对船舶安全带来了威胁.针对船舶燃料电池舱内发生氢气泄漏的情景,选取目标船舶建立其燃料电池舱三维几何模型,并基于理想气体模型和氢气泄漏参数,计算出氢气从管道的泄漏值.再基于流体计算软件Fluent,选取适合的气体扩散模型,通过边界条件的设置,开展对舱门开闭和通风口状态的联合通风条件下氢气在舱内的扩散过程的瞬态数值仿真实验,并对不同条件下的舱内氢气浓度分布和发展规律进行了对比分析.仿真结果表明,在舱室上方的4个角落处,氢气的聚积浓度更高,是氢气探测器安装的最佳位置;在通风口保持自然通风的条件下,打开舱门可以使氢气的最终浓度降低20%左右;在单个通风口采用强制通风的通风量达到6 m3/s时,燃料电池舱内的氢气向其他舱室的扩散浓度可以维持在4%的安全浓度以下,且整个舱室的氢气浓度都可以保持在一个较低的水平,而继续增大通风量对氢气浓度的降低效果并不显著.   相似文献   
2.
研究目的:下部基础中桥梁、路基和路桥过渡段对高速铁路无砟轨道结构性能有着重要的影响,因此分析不同下部基础对CRTSⅡ型板式无砟轨道内温度场分布的影响尤为关键。本文基于无砟轨道现场的半年温度监测数据,对比分析简支箱梁、路基和路桥过渡段三种基础上CRTSⅡ型板式无砟轨道内温度和温度梯度变化特征。研究结论:(1)半年内过渡段上无砟轨道内温度的非高斯性和非平稳性更显著,路基上非高斯性最差;四个特殊温度日,最高温度日的轨道内温度变化幅值最显著,而最大温差日的轨道内温度梯度变化幅值最大;(2)对于不同下部基础,过渡段轨道的温度变化和温度梯度变化最显著,其次是路基和桥上轨道的温度变化;(3)不同基础上轨道板的温度、路基土体的温度与环境温度呈明显的非线性关系,二次多项式拟合函数可表征轨道板内温度与环境温度的关系;桥上轨道的拟合优度R2为0.803,高于过渡段(0.752)和路基(0.635)上的;(4)本文研究可为高速铁路无砟轨道长期服役性能评估提供重要的温度实测数据。  相似文献   
3.
气动噪声是高温超导磁悬浮列车噪声的主要来源,以新型高温超导磁悬浮列车1∶8缩比的8车模型为研究对象,基于大涡模拟(LES)方法和K-FWH方程,通过建立可穿透积分面对列车在500,550,600及650 km·h-1 4个速度级下的气动噪声特征进行数值仿真研究。结果表明:在U型轨道的约束下,列车周围的气动激扰主要集中在车顶两侧、尾车流线型及尾流区;偶极子声源主要分布在中车车顶表面两侧、尾车流线型及超导线圈后方,尾流区也是重要的气动噪声源区;列车辐射噪声频谱呈现“宽峰”(100~315 Hz)特性,随着车速提升,低频噪声能量增强;4个速度级下测点辐射噪声水平变化规律一致,噪声最大值分别为94.2,96.4,100.1和105.2 dB(A);随着车速提升,四极子声源能量占比不断增大,当车速大于600 km·h-1时,16个测点的四极子声源平均能量占比超过90%。研究成果可为高温超导磁悬浮列车气动声学优化设计提供参考。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号